破译一致性难题:Raft日志复制技术及成员变更问题详解

本文主要是介绍破译一致性难题:Raft日志复制技术及成员变更问题详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 一、日志复制

        Raft 算法是一种用于实现分布式系统中一致性状态机复制的共识算法。在 Raft 中,日志复制是保证集群数据一致性的关键机制。每个节点(服务器)都维护着一个日志,其中包含一系列的日志条目(Log Entry),每个条目包括一个索引值、任期号以及客户端提交的状态机命令。

        在 Raft 算法中,副本数据是以日志的形式存在的,领导者接收到来自客户端的写请求后,处理写请求的过程就是一个复制和应用(Apply)日志项到状态机的过程。

        那 Raft 日志是如何复制日志的呢?又如何实现日志一致的呢?这些内容是Raft中非常核心的内容。

        1.1 什么是 Raft 日志

        副本数据是以日志的形式存在的,日志是由日志项组成,日志项究竟是什么样子呢?

        其实,日志项是一种数据格式,它主要包含用户指定的数据,也就是指令(Commond),还包含一些附加信息,比如索引值(Log Index)、任期编号(Term)。

  • 指令:一条由客户端请求指定的、状态机需要执行的指令。可以将指令理解成客户端指定的数据。
  • 索引值:日志项对应的整数索引值,其实就是用来标识日志项的,是一个连续的、递增的整数号码。
  • 任期编号:创建这条日志项的领导者的任期编号。

        从图中可以看到,一届领导者任期,往往有多条日志项。而且日志项的索引值是连续的。

        1.2 日志复制

        你可以把Raft日志复制理解成一个优化后的二阶段提交(将二阶段优化成一阶段),减少了一半的往返消息,也就是降低了一半的消息延迟。那日志复制的具体过程是什么呢? 

        首先,领导者进入第一阶段,通过日志复制(AppendEntries)RPC 消息,将日志项复制到集群其他节点。

        接着,如果领导者接收到大多数”复制成功“的响应后,它将日志项应用到自己的状态机,并返回成功给客户端。如果领导者没有接收到大多数”复制成功“响应,那么就返回错误给客户端。

        领导者将日志项应用到它的状态机,怎么没通知跟随者应用日志项呢?

        这是 Raft 的一个优化,领导者不直接发送消息通知其他节点应用日志项。因为领导者的日志复制 RPC 消息或心跳消息,包含了当前最大的,将会被提交(Commit)日志项索引值。所以通过日志复制RPC消息或心跳消息,跟随者就可以知道领导者的日志提交位置信息。

        因此,当其他节点接收到领导者心跳信息,或者新的日志复制RPC消息后,就会将日志项应用到它的状态机。而这个优化,降低了处理客户端请求的延迟,将二阶段提交优化为一阶段提交,降低了一半的消息延迟。

       

  1. 接收到客户端请求后,领导者基于客户端请求中的指令,创建一个新日志项,并附加到本地日志中。
  2. 领导者通过日志复制 RPC,将新的日志复制到其他服务器。
  3. 当领导者将日志项,成功复制到大多数服务器上时,领导者会将日志项应用到它的状态机中。
  4. 领导者将执行结果返回给客户端。
  5. 当跟随者接收到心跳信息,或者新的日志复制 RPC 消息后,如果跟随者发现领导者已经提交了某条日志项,而它还没有,那跟随者就将这条日志项应用到本地状态机。

        不过,这是一个理想状态下的日志复制过程。在实际环境中,复制日志的时候,你可能会遇到进程崩溃、服务器宕机等问题,这些问题会导致日志不一致。那么在这种情况下,Raft 算法是如何处理不一致日志,实现日志的一致的呢?

        1.3 如何实现日志一致?

        在 Raft 算法中,领导者通过强制跟随者直接复制自己的日志项,处理不一致日志。也就是说,Raft 是通过以领导者的日志为准,来实现各节点日志一致的。具体有两个步骤:

  • 首先,领导者通过日志复制 RPC 的一致性检查,找到跟随节点上,与自己相同的日志项的最大索引值。也就是说,这个索引值之前的日志,领导者和跟随者是一致的,之后的日志是不一致的。
  • 然后,领导者强制跟随者更新覆盖不一致的日志项,实现日志的一致。

        看下详细流程

  • PrevLogEntry:表示当前要复制的日志项,前面一条日志项的索引值。比如在图中,如果领导者将索引值为 8 的日志项发送给跟随者,那么此时 PrevLogEntry 值为 7。
  • PrevLogTerm:表示当前要复制的日志项,前面一条日志项的任期编号,比如在图中,如果领导者将索引值为 8 的日志项发送给跟随者,那么此时 PrevLogTerm 值为 4

  1. 领导者通过日志复制 RPC 消息,发送当前最新日志项到跟随者(假设当前需要复制的日志项是最新的),这个消息的 PrevLogEntry 值为 7,PrevLogTerm 值为 4。
  2. 如果跟随者在它的日志中,找不到与 PrevLogEntry 值为 7、PrevLogTerm 值为 4 的日志项,也就是说它的日志和领导者的不一致了,那么跟随者就会拒绝接收新的日志项,并返回失败信息给领导者。
  3. 这时,领导者会递减要复制的日志项的索引值,并发送新的日志项到跟随者,这个消息的 PrevLogEntry 值为 6,PrevLogTerm 值为 3。
  4. 如果跟随者在它的日志中,找到了 PrevLogEntry 值为 6、PrevLogTerm 值为 3 的日志项,那么日志复制 RPC 返回成功,这样一来,领导者就知道在 PrevLogEntry 值为 6、PrevLogTerm 值为 3 的位置,跟随者的日志项与自己相同。
  5. 领导者通过日志复制 RPC,复制并更新覆盖该索引值之后的日志项(也就是不一致的日志项),最终实现了集群各节点日志的一致。

        从上面步骤中可以看到,领导者通过日志复制 RPC 一致性检查,找到跟随者节点上与自己相同日志项的最大索引值,然后复制并更新覆盖该索引值之后的日志项,实现了各节点日志的一致。需要你注意的是,跟随者中的不一致日志项会被领导者的日志覆盖,而且领导者从来不会覆盖或者删除自己的日志。

二、成员变更

        Raft 是共识算法,对集群成员进行变更时(比如增加 2 台服务器),会不会因为集群分裂,出现 2 个领导者呢?

        的确会出现这个问题,因为 Raft 的领导者选举,建立在“大多数”的基础之上,那么当成员变更时,集群成员发生了变化,就可能同时存在新旧配置的 2 个“大多数”,出现 2 个领导者,破坏了 Raft 集群的领导者唯一性,影响了集群的运行。

        而关于成员变更,不仅是 Raft 算法中比较难理解的一部分,非常重要,也是 Raft 算法中唯一被优化和改进的部分。比如,最初实现成员变更的是联合共识(Joint Consensus),但这个方法实现起来难,后来 Raft 的作者就提出了一种改进后的方法,单节点变更(single-server changes)。

        先介绍一下“配置”。配置是成员变更中一个非常重要的概念,可以这么理解:他就是再说集群是哪些节点组成的,是集群各节点地址信息的集合。比如节点 A、B、C 组成的集群,那么集群的配置就是[A、B、C]集合。

        假设我们有一个由节点A、B、C组成的Raft集群,现在我们需要增加副本数,增加两个副本(也就是增加两台服务器),扩展为由节点A、B、C、D、E,5个节点组成的新集群。

        那么Raft是如何保证集群配置信息变更时,集群能稳定运行,不出现两个领导者呢?

        2.1 成员变更问题

        在集群进行成员变更的最大风险是,可能会同时出现两个领导者。比如在进行成员变更时,节点 A、B 和 C 之间发生了分区错误,节点 A、B 组成旧配置中的”大多数“,也就是变更前的3节点集群中的”大多数“,那么这时的领导者节点(节点A)依旧是领导者。

        另一方面,节点 C 和新节点 D、E 组成新配置的”大多数“,也就是变更后的5节点集群中的”大多数“,他们会选举出新的领导者(比如节点C)。那么这时就同时出现了两个领导者的情况。

        如果出现了两个领导者,那么就违背了”领导者的唯一性“原则,进而影响到集群的稳定运行。如何解决这个问题呢?

        因为我们在启动集群时,配置是固定的,不存在成员变更,在这种情况下,Raft的领导者选举能保证只有一个领导者。也就是说,这时不会出现多个领导者的问题,那我可以先将集群关闭再启动新集群啊。也就是先把节点 A、B、C 组成的集群关闭,然后再启动节点 A、B、C、D、E 组成的新集群。

        这种方法不可行。因为每次变更都需要重启集群,意味着在集群变更期间服务不可用肯定不行的,太影响用户体验。

        2.2 单节点变更

        单节点变更,就是通过一次变更一个节点实现成员变更。如果需要变更多个节点,那需要执行多次单节点变更。

        比如将 3 节点集群扩容为 5 节点集群,这时你需要执行 2 次单节点变更,先将 3 节点集群变更为 4 节点集群,然后再将 4 节点集群变更为 5 节点集群,就像下图的样子。  

      

        我们看下如何用单节点变更的方法,解决这个问题。为了演示方便,我们假设节点 A 是领导者,目前的集群配置为[A, B, C],我们先向集群中加入节点 D,这意味着新配置为[A, B, C, D]。成员变更,是通过这么两步实现的:

  1. 第一步,领导者(节点A)向新节点(节点D)同步数据;
  2. 第二步,领导者(节点A)将新配置[A、B、C、D]作为一个日志项,复制到新配置中的所有节点(节点A、B、C、D)上,然后将新配置的日志项应用到本地状态机,完成单节点变更。

        在变更完成后,现在的集群配置就是[A, B, C, D],我们再向集群中加入节点 E,也就是说,新配置为[A, B, C, D, E]。成员变更的步骤和上面类似。

        这样一来,我们就通过一次变更一个节点的方式,完成了成员变更,保证了集群中始终只有一个领导者,而且集群也在稳定运行,持续提供服务。

        在正常情况下,不管旧的集群配置是怎么组成的,旧配置的“大多数”和新配置的“大多数”都会有一个节点是重叠的。 也就是说,不会同时存在旧配置和新配置 2 个“大多数”。

        关于Raft算法日志复制和成员变更就介绍到这里。

这篇关于破译一致性难题:Raft日志复制技术及成员变更问题详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750204

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创