人工智能产生的幻觉问题真的能被看作是创造力的另一种表现形式吗?

本文主要是介绍人工智能产生的幻觉问题真的能被看作是创造力的另一种表现形式吗?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenAI的首席执行官山姆·奥特曼(Sam Altman)曾声称,人工智能产生的“幻觉”其实未尝不是一件好事,因为实际上GPT的优势正在于其非凡的创造力

目录

一.幻觉问题的概念

二.幻觉产生的原因

三.幻觉的分类

四.减轻AI的幻觉问题到底应如何着手


一.幻觉问题的概念

人工智能的幻觉问题是指其在没有充分训练数据支持的情况下自信地做出的响应。这种响应可能是由于数据不完备、存在偏见或过于专业化等因素导致的。以下是详细介绍:
 

- 内在幻觉指AI大模型生成的内容与其输入内容之间存在矛盾,即生成的回答与提供的信息不一致。这种错误往往可以通过核对输入内容和生成内容来相对容易地发现和纠正
- 外在幻觉
指的是生成内容的错误性无法从输入内容中直接验证。这种错误通常涉及模型调用了输入内容之外的数据、文本或信息,从而导致生成的内容产生虚假陈述。外在幻觉难以被轻易识别,因为虽然生成的内容可能是虚假的,但模型可以以逻辑连贯、有条理的方式呈现,使人们很难怀疑其真实性。

就比如我想AI提问,刘翔在那一年获得了乒乓球冠军?它可能会回答2004年,但实际上刘翔并没有获得过乒乓球赛的冠军,而AI的这种自信来源于它不会对提问者的假设条件进行判断,它认为你给出它的前提条件是正确的,从而基于这种情况结合自身所掌握的数据捏造出一个有悖于事实的答案

当人们说GPT致幻时,他们指的就是这种对事实的篡改。但是幻觉这一概念也暗示着,GPT在别的时候可以准确地描述事实。不幸的是,这加剧了人们对大型语言模型工作原理的误解,而这种误解往往会在一项技术变得安全或危险时产生区别。我们倒不如说GPT的所作所为统统应归于“幻觉”范畴,因为这些模型中根本不存在“非幻觉”状态(即根据某种外部感知来检查某事物的有效性)。在它们的世界里,答案不分对错,目标也没有意图。

二.幻觉产生的原因

研究人员将AI幻觉归因于高维统计现象和训练数据不足等因素。一些人认为,被归类为“幻觉”的特定“不正确”的AI反应可能由训练数据证明是合理的。然而,其他人对这些发现提出了质疑,并认为人工智能模型可能偏向于肤浅的统计数据,导致在现实世界场景中做出不可靠的反应。

在自然语言处理中,幻觉通常被定义为“生成的内容,这些内容与提供的源内容无关或不忠实”。文本和表示之间的编码和解码错误会导致幻觉。产生不同反应的人工智能训练也可能导致幻觉。较大的数据集可能会产生参数知识问题,如果系统对其硬连线知识过于自信,则会产生幻觉。

三.幻觉的分类

  • 模型内在知识冲突:模型在输出时,与输入提示或上下文存在冲突。比如,语言模型在生成一句话时,前面的单词与后面的单词语义不连贯。视觉语言模型在描述图像时,可能会将图像中的物体错误地识别出来。
  • 信息遗忘与更新冲突:模型遗忘之前掌握的事实知识,无法吸收新的信息。比如,语言模型在回答一个问题时,会错误地输出与问题无关的内容。这是因为模型“遗忘”了问题的语义,无法正确理解问题。
  • 多模态融合冲突:来自不同模态的信息融合时,可能会互相干扰导致错误输出。比如,图像与文本信息融合时,图像中的文本可能会影响模型对整个场景的理解。

四.减轻AI的幻觉问题到底应如何着手

  • 数据方面:使用高质量的数据进行训练,如详细注释的数据集,可以减少模型的“幻觉”。
  • 模型训练方面:采用合适的训练技术和损失函数,如指令微调、对比学习等,也可以减少模型的“幻觉”。
  • 模型推理后处理方面:使用外部知识库辅助推理,或利用后处理技术修改模型的输出结果,使输出更符合人类偏好。
  • 访问实时信息一种可能的解决方案是让人工智能系统能够访问来自互联网的实时信息。这将允许人工智能将其响应与可用的最新数据进行交叉检查。例如,如果人工智能系统被问及特定位置的天气,它可以使用实时天气数据来准确响应。然而,这种方法也有其自身的挑战,包括数据隐私问题以及人工智能系统从互联网访问和传播虚假信息的风险。

  • 与搜索引擎集成另一个潜在的解决方案是将人工智能系统与搜索引擎集成。这将使人工智能能够在提供响应之前快速搜索,确保其答案基于最相关和最新的可用信息。但是,这种方法也有其局限性。搜索引擎可能只是有时提供准确的信息,人工智能系统可能仍然需要帮助来区分可靠的来源和不可靠的来源。

  • 改进的训练数据提高用于训练人工智能系统的训练数据的质量和多样性也有助于缓解人工智能幻觉的问题。为人工智能提供更广泛的数据可能会更好地提供准确可靠的响应。

  • 高级算法:开发能够更好地理解问题上下文并提供更准确答案的高级算法也会有所帮助。这些算法可以设计成识别人工智能何时即将产生幻觉,并提示它询问更多信息或承认它不知道答案。

这篇关于人工智能产生的幻觉问题真的能被看作是创造力的另一种表现形式吗?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/750151

相关文章

MySQL的cpu使用率100%的问题排查流程

《MySQL的cpu使用率100%的问题排查流程》线上mysql服务器经常性出现cpu使用率100%的告警,因此本文整理一下排查该问题的常规流程,文中通过代码示例讲解的非常详细,对大家的学习或工作有一... 目录1. 确认CPU占用来源2. 实时分析mysql活动3. 分析慢查询与执行计划4. 检查索引与表

MySQL报错sql_mode=only_full_group_by的问题解决

《MySQL报错sql_mode=only_full_group_by的问题解决》本文主要介绍了MySQL报错sql_mode=only_full_group_by的问题解决,文中通过示例代码介绍的非... 目录报错信息DataGrip 报错还原Navicat 报错还原报错原因解决方案查看当前 sql mo

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

MYSQL事务死锁问题排查及解决方案

《MYSQL事务死锁问题排查及解决方案》:本文主要介绍Java服务报错日志的情况,并通过一系列排查和优化措施,最终发现并解决了服务假死的问题,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录问题现象推测 1 - 客户端无错误重试配置推测 2 - 客户端超时时间过短推测 3 - mysql 版本问

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Vue项目中Element UI组件未注册的问题原因及解决方法

《Vue项目中ElementUI组件未注册的问题原因及解决方法》在Vue项目中使用ElementUI组件库时,开发者可能会遇到一些常见问题,例如组件未正确注册导致的警告或错误,本文将详细探讨这些问题... 目录引言一、问题背景1.1 错误信息分析1.2 问题原因二、解决方法2.1 全局引入 Element

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje