深度学习(8)---Diffusion Modle原理剖析

2024-02-26 16:44

本文主要是介绍深度学习(8)---Diffusion Modle原理剖析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、简要回顾
  • 二、原理解释
    • 2.1 核心图:
    • 2.2 第一阶段概括
    • 2.3 第一阶段解释
    • 2.4 第二阶段概括
    • 2.5 第二阶段解释


一、简要回顾

 1. Diffusion Modle的基本过程可由下面这张图说明:

在这里插入图片描述

 2. Diffusion Modle与VAE的区别:

在这里插入图片描述

二、原理解释

2.1 核心图:

在这里插入图片描述

2.2 第一阶段概括

 1. 训练阶段步骤如下图所示:(1) 重复下面五个步骤。(2) 从样本库里拿出一张干净的图片。(3) 随机在1-T中生成一个数字。(4) 生成一个纯噪声。(5) 产生一个有噪声的图。

在这里插入图片描述

 2. 第五步形象说明如下所示,红标指的地方理解成噪声图。

在这里插入图片描述

 3. 那其实实际过程跟上一篇文章中讲的有一些不一样,可参照下图理解。

在这里插入图片描述

2.3 第一阶段解释

 1. 在整体思路部分我们已经知道了正向过程其实就是一个不断加噪的过程,于是我们考虑能不能用一些公式表示出加噪前后图像的关系呢。先思考一下后一时刻的图像受哪些因素影响呢?更具体的说 x 2 x_2 x2 是由 x 1 x_1 x1 和所加的噪声共同决定的,也就是说后一时刻的图像主要由两个量决定,其一是上一时刻图像,其二是所加噪声量。我们就可以用一个公式来表示 x t x_t xt x t − 1 x_{t-1} xt1 时刻两个图像的关系,如下所示:

在这里插入图片描述

Z 1 Z_1 Z1 表示添加的高斯噪声。 X t − 1 X_{t-1} Xt1 Z 1 Z_1 Z1 前面的系数是权重,它们的平方和为1。其实 a t a_t at 还和另外一个量 β t β_t βt 有关,关系式如下:

在这里插入图片描述

 其中 β t β_t βt 是预先给定的值,它是一个随时刻不断增大的值。既然 β t β_t βt 越来越大,则 a t a_t at 越来越小, Z 1 Z_1 Z1 的权重​随着时刻增加越来越大,表明我们所加的高斯噪声越来越多,这和我们整体思路所述是一致的,即越往后所加的噪声越多。

 2. 现在,我们已经得到了 x t x_t xt x t − 1 x_{t-1} xt1 时刻两个图像的关系,但是 x t − 1 x_{t-1} xt1 时刻的图像是未知的。【注:只有 x 0 x_0 x0 阶段图像是已知的,即原图】我们需要再由 x t − 2 x_{t-2} xt2 时刻图像推导出 x t − 1 x_{t-1} xt1 时刻图像。依此类推,直到由 x 0 x_0 x0 时刻推导出 x 1 x_1 x1 时刻图像即可。

在这里插入图片描述

在这里插入图片描述

 最后一步的等式用了高斯分布的相关性质。

在这里插入图片描述

 3. 再列出 x t − 2 x_{t-2} xt2 时刻图像与 x t − 3 x_{t-3} xt3 时刻图像的关系,如下所示:
在这里插入图片描述

 同理,我们将公式5代入到公式4中,得到 x t x_{t} xt 时刻图像和 x t − 3 x_{t-3} xt3 时刻图像的关系,公式如下:

在这里插入图片描述

 4. 我们如果这么一直计算下去,就会得到 x t x_{t} xt 时刻图像和 x 0 x_{0} x0 时刻图像的关系,公式如下:

在这里插入图片描述

在这里插入图片描述

2.4 第二阶段概括

 生成图阶段步骤如下图所示:(1) 生成一个纯噪声图。(2) 重复T次。(3) 再生成一个纯噪声图。(4) 生成前一个图,这里我认为可以理解成弱噪声图。

在这里插入图片描述

2.5 第二阶段解释

 1. 逆向过程是将高斯噪声还原为预期图片的过程。一个 x t x_{t} xt时刻的高斯噪声。我们希望将 x t x_t xt 时刻的高斯噪声变成 x 0 x_0 x0 时刻的图像,这是很难一步到位的,所以先考虑 x t x_t xt 时刻与 x t − 1 x_{t-1} xt1 时刻的关系,然后一步步向前推导得出结论。

 2. 利用贝叶斯公式来求 x t − 1 x_{t-1} xt1 时刻图像,公式如下:

在这里插入图片描述

在这里插入图片描述

 3. 公式8中 q ( X t ∣ X t − 1 ) q(X_t|X_{t-1}) q(XtXt1) 可以由正向过程求得,但 q ( X t ) q(X_t) q(Xt) q ( X t − 1 ) q(X_{t-1}) q(Xt1) 是未知的。由公式7可知,可由 X 0 X_0 X0 得到每一时刻的图像,那当然可以得到 X t X_t Xt X t − 1 X_{t-1} Xt1 时刻的图像,故将公式8加一个 X 0 X_0 X0 作为已知条件,将公式8变成公式9,如下所示:

在这里插入图片描述

 现在可以发现公式9右边3项都是可以算的啦,我们列出它们的公式和对应的分布,如下图所示:

在这里插入图片描述

 4. 知道了公式9等式右边3项服从的分布,我们就可以计算出等式左边的 q ( X t − 1 ∣ X t , X 0 ) q ( X_{t − 1}∣X_t,X_0 ) q(Xt1Xt,X0)。高斯分布表达式和计算过程如下所示:

在这里插入图片描述

在这里插入图片描述

 上图为等式右边三个高斯分布表达式,这个结果怎么得的大家应该都知道叭,就是把各自的均值和方差代入高斯分布表达式即可。现在我们只需对上述三个式子进行对应乘除运算即可,如下图所示:

在这里插入图片描述

在这里插入图片描述

 5. 现在我们有了均值 u u u 和方差 σ 2 σ^2 σ2 就可以求出 q ( X t − 1 ∣ X t , X 0 ) q(X_{t − 1}∣X_t,X_0 ) q(Xt1Xt,X0),也就是求得了 x t − 1 x_{t−1} xt1 时刻的图像。不知道大家有没有发现一个问题,我们刚刚求得的最终结果 u u u σ 2 σ^2 σ2 中含了 X 0 X_0 X0,这是我们最后想要的结果,这时我们考虑用公式7来反向估计 X 0 X_0 X0,如下所示:

在这里插入图片描述

 此时将公式10代入到上图的 u u u 中:

在这里插入图片描述

 现在整理一下 t − 1 t-1 t1 时刻的均值 u u u 和方差 σ 2 σ^2 σ2,如下所示:

在这里插入图片描述

 有了公式12我们就可以估计出 X t − 1 X_{t-1} Xt1 时刻的图像了,接着就可以一步步求出 X t − 2 X_{t-2} Xt2 X t − 3 X_{t-3} Xt3 X 1 X_1 X1 X 0 X_0 X0 的图像啦。

这篇关于深度学习(8)---Diffusion Modle原理剖析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/749514

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建