【PaddleHub模型贡献】一行代码实现蛇种识别

2024-02-26 05:50

本文主要是介绍【PaddleHub模型贡献】一行代码实现蛇种识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一行代码实现蛇种识别

  • 一、模型开发
    • 1.安装必要的资源库
    • 2.数据预处理
      • 2.1解压数据集
      • 2.2划分训练集
    • 3.模型训练
      • 3.1设置使用0号GPU卡
      • 3.2图像预处理+数据增强
      • 3.3数据迭代器的定义
      • 3.4开始炼丹
    • 4.查看模型预测效果
  • 二、封装Module
    • 1.导出inference模型
    • 2.模型转换
    • 3.模型安装
    • 4.模型预测
      • 预测单张图片
      • 预测多张图片
  • 三、在GitHub上提pr
    • 1.Fork PaddleHub
    • 2.上传Module
    • 3.Pull Request
  • 四、总结与升华
  • 个人简介

毒蛇伤人事件在全世界范围内已造成相当一部分的死亡和受伤案例,这对于公众健康是一个重要的却又容易被忽视的影响因素。一部分人被蛇咬后无法准确地区分蛇的种类,无法知道蛇有毒与否,并且还因为不具备一定的自救知识而被蛇咬后不知所措。基于此,开发者 叶月火狐 基于飞桨开发了一款《野外蛇谱》的app,帮助人们在野外被蛇咬后准确识别蛇的种类,并精准判断蛇的毒性,提供自救方案,帮助人们在被蛇咬后的紧急处理。

前不久,飞桨官方在AI Studio上挑选了45个优质项目,优质项目链接:https://shimo.im/sheets/CqQvXq3JhGqCxdXv/MODOC

开发者 叶月火狐 开发的《野外蛇谱》的app是上面的优质项目之一,将其转换成PaddleHub模型可供更多开发者快速使用。

参考资料:

  • 基于飞桨开发的《野外蛇谱》app
  • 手把手带你将Paddlex模型部署为PaddleHub
  • 【PaddleHub模型贡献】一行代码实现水表的数字表盘分割
  • 【PaddleHub模型贡献】一行代码实现从彩色图提取素描线稿

一、模型开发

1.安装必要的资源库

原项目使用PaddleX开发,因此这里先安装PaddleX:

!pip install paddlex

2.数据预处理

2.1解压数据集

!unzip data/data44587/snake_data.zip -d /home/aistudio/

2.2划分训练集

!paddlex --split_dataset --format ImageNet --dataset_dir '/home/aistudio/snake_data' --val_value 0.2 --test_value 0.1

3.模型训练

3.1设置使用0号GPU卡

import matplotlib
matplotlib.use('Agg') 
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import paddlex as pdx

3.2图像预处理+数据增强

from paddlex.cls import transforms
train_transforms = transforms.Compose([transforms.RandomCrop(crop_size=224),transforms.RandomHorizontalFlip(),transforms.Normalize()
])
eval_transforms = transforms.Compose([transforms.ResizeByShort(short_size=256),transforms.CenterCrop(crop_size=224),transforms.Normalize()
])

3.3数据迭代器的定义

train_dataset = pdx.datasets.ImageNet(data_dir='snake_data',file_list='snake_data/train_list.txt',label_list='snake_data/labels.txt',transforms=train_transforms,shuffle=True)
eval_dataset = pdx.datasets.ImageNet(data_dir='snake_data',file_list='snake_data/val_list.txt',label_list='snake_data/labels.txt',transforms=eval_transforms)
2020-07-19 11:49:17 [INFO]	Starting to read file list from dataset...
2020-07-19 11:49:17 [INFO]	17364 samples in file snake_data/train_list.txt
2020-07-19 11:49:17 [INFO]	Starting to read file list from dataset...
2020-07-19 11:49:17 [INFO]	25 samples in file snake_data/val_list.txt

3.4开始炼丹

num_classes = len(train_dataset.labels)
model = pdx.cls.ResNet50_vd_ssld(num_classes=num_classes)
model.train(num_epochs = 60,save_interval_epochs = 10,train_dataset = train_dataset,train_batch_size = 64,eval_dataset = eval_dataset,learning_rate = 0.025,warmup_steps = 1084,warmup_start_lr = 0.0001,lr_decay_epochs=[20, 40],lr_decay_gamma = 0.025,    save_dir='/home/aistudio',use_vdl=True)

4.查看模型预测效果

import cv2
import matplotlib.pyplot as plt# 加载模型
print('**************************************加载模型*****************************************')
model = pdx.load_model('best_model')# 显示图片
img = cv2.imread('test.jpg')
b,g,r = cv2.split(img)
img = cv2.merge([r,g,b])
%matplotlib inline
plt.imshow(img)# 预测
result = model.predict('test.jpg', topk=3)
print('**************************************预测*****************************************')
print(result[0])
**************************************加载模型*****************************************
2020-07-19 14:21:06 [INFO]	Model[ResNet50_vd_ssld] loaded.
**************************************预测*****************************************
{'category_id': 4, 'category': '西部菱斑响尾蛇', 'score': 0.9999999}

在这里插入图片描述

二、封装Module

1.导出inference模型

参数说明
–model_dirinference模型所在的文件地址,文件包括:.pdparams.pdopt.pdmodel.json.yml
–save_dir导出inference模型,文件将包括:__model____params__model.yml
!paddlex --export_inference --model_dir=best_model --save_dir=./inference_model/ResNet50_vd_ssld
W0717 23:24:19.157521 13809 device_context.cc:252] Please NOTE: device: 0, CUDA Capability: 70, Driver API Version: 9.2, Runtime API Version: 9.0
W0717 23:24:19.161340 13809 device_context.cc:260] device: 0, cuDNN Version: 7.3.
2020-07-17 23:24:22 [INFO]	Model[ResNet50_vd_ssld] loaded.
2020-07-17 23:24:22 [INFO]	Model for inference deploy saved in ./inference_model/ResNet50_vd_ssld.

2.模型转换

PaddleX模型可以快速转换成PaddleHub模型,只需要用下面这一句命令即可:

!hub convert --model_dir inference_model/ResNet50_vd_ssld \--module_name SnakeIdentification \--module_version 1.0.0 \--output_dir outputs

转换成功后的模型保存在outputs文件夹下,我们解压一下:

!gzip -dfq /home/aistudio/outputs/SnakeIdentification.tar.gz
!tar -xf /home/aistudio/outputs/SnakeIdentification.tar

3.模型安装

安装我们刚刚转换的模型:

!hub install SnakeIdentification

4.模型预测

预测单张图片

import cv2
import paddlehub as hubmodule = hub.Module(name="SnakeIdentification")images = [cv2.imread('snake_data/class_1/2421.jpg')]# execute predict and print the result
results = module.predict(images=images)
for result in results:print(result)
[2021-03-12 10:55:05,972] [ WARNING] - The _initialize method in HubModule will soon be deprecated, you can use the __init__() to handle the initialization of the object[{'category_id': 0, 'category': '水蛇', 'score': 0.9999205}]

预测多张图片

选取5张图片,每张图片对应一个类别:

import cv2
import paddlehub as hubmodule = hub.Module(name="SnakeIdentification")images = [cv2.imread('snake_data/class_1/2421.jpg'), cv2.imread('snake_data/class_2/113.jpg'), cv2.imread('snake_data/class_3/757.jpg'),cv2.imread('snake_data/class_4/1101.jpg'), cv2.imread('snake_data/class_5/2566.jpg')]# execute predict and print the result
results = module.predict(images=images)
for result in results:
nt the result
results = module.predict(images=images)
for result in results:print(result)
[2021-03-12 11:00:07,036] [ WARNING] - The _initialize method in HubModule will soon be deprecated, you can use the __init__() to handle the initialization of the object[{'category_id': 0, 'category': '水蛇', 'score': 0.9999205}]
[{'category_id': 1, 'category': '剑纹带蛇', 'score': 0.9988399}]
[{'category_id': 2, 'category': '德凯斯氏蛇', 'score': 0.9867851}]
[{'category_id': 3, 'category': '黑鼠蛇', 'score': 0.9468411}]
[{'category_id': 4, 'category': '西部菱斑响尾蛇', 'score': 1.0}]

三、在GitHub上提pr

pr就是Pull Request(翻译过来就是:拉取请求)的简称

1.Fork PaddleHub

进入PaddleHub的源码仓库https://github.com/PaddlePaddle/PaddleHub

看到这个箭头指向的按钮了吗?点它!!!

如果可以的话,可以顺手把它旁边的Star给点了(手动狗头)

点击以后,你的账号下面就有一个叫PaddleHub的代码仓库了,就像这样:

2.上传Module

本项目是图像分类的项目,所以进入到图像分类的目录下:

PaddleHub/modules/image/classification/

点击Add file:

先输入您上传的Module名称,这里我的Module名称命名为SnakeIdentification,将它变成一个文件夹,只需要在后面加一个‘/’,创建好文件夹以后,把Module里的文件上传上去即可:

上传成功后,点击Commit,文件就会自动上传到你自己的代码仓库里

3.Pull Request

最后一步,拉取请求:

确认无误后点击提交即可:

四、总结与升华

这次图像分类的任务比较简单,用的时间大概是2个小时,总的来说,熟练以后还是蛮简单的。

最近飞桨有新活动,给飞桨PaddlePaddle家族提PR,根据积分排行,可以兑换惊喜大礼!活动详情请见:飞桨开发者技术专家(PPDE) Q1活动开启

大家赶紧冲呀!!!

个人简介

北京联合大学 机器人学院 自动化专业 2018级 本科生 郑博培
百度飞桨开发者技术专家 PPDE
百度飞桨官方帮帮团、答疑团成员
深圳柴火创客空间 认证会员
百度大脑 智能对话训练师
阿里云人工智能、DevOps助理工程师

我在AI Studio上获得至尊等级,点亮9个徽章,来互关呀!!!

https://aistudio.baidu.com/aistudio/personalcenter/thirdview/147378

这篇关于【PaddleHub模型贡献】一行代码实现蛇种识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747864

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand