【PaddleHub模型贡献】一行代码实现驾驶员状态识别

2024-02-26 05:50

本文主要是介绍【PaddleHub模型贡献】一行代码实现驾驶员状态识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

驾驶员状态识别

  • 一、工具简介
    • PaddleX
    • PaddleHub
  • 二、数据集介绍
  • 三、模型开发
    • 1.安装PaddleX
    • 2.定义数据加载器
    • 3.模型训练
    • 4.导出预测模型
    • 5.评估模型性能
  • 四、模型转换
  • 五、模型预测
  • 六、总结与升华
  • 个人简介

一般来讲,人在疲劳的时候会有比较典型的面部表情或动作特征,如较长的眨眼持续时间、较慢的眼睑运动、点头、打哈欠等。

基于摄像头的驾驶员监测方案正是利用这一点:首先挖掘出人在疲劳状态下的表情特征,然后将这些定性的表情特征进行量化,提取出面部特征点及特征指标作为判断依据,再结合实验数据总结出基于这些参数的识别方法,最后输入获取到的状态数据进行识别和判断。

前不久,飞桨官方在AI Studio上挑选了45个优质项目,优质项目链接:https://shimo.im/sheets/CqQvXq3JhGqCxdXv/MODOC

开发者 BIT可达鸭 开发的基于PaddleX的驾驶员状态识别和Paddle-Lite部署是上面的优质项目之一,将其转换成PaddleHub模型可供更多开发者快速使用。

参考资料:

  • 基于PaddleX的驾驶员状态识别和Paddle-Lite部署
  • 手把手带你将Paddlex模型部署为PaddleHub
  • 【PaddleHub模型贡献】一行代码实现水表的数字表盘分割
  • 【PaddleHub模型贡献】一行代码实现从彩色图提取素描线稿
  • 【PaddleHub模型贡献】一行代码实现蛇种识别

一、工具简介

PaddleX

PaddleX是飞桨全流程开发工具,集飞桨核心框架、模型库、工具及组件等深度学习开发所需全部能力于一身,打通深度学习开发全流程,并提供简明易懂的Python API,方便用户根据实际生产需求进行直接调用或二次开发,为开发者提供飞桨全流程开发的最佳实践。目前,该工具代码已开源于GitHub,同时可访问PaddleX在线使用文档,快速查阅读使用教程和API文档说明。

PaddleX代码GitHub链接:https://github.com/PaddlePaddle/PaddleX

PaddleX文档链接:https://paddlex.readthedocs.io/zh_CN/develop/

PaddleX官网链接:https://www.paddlepaddle.org.cn/paddle/paddlex

PaddleHub

PaddleHub官方Github地址(欢迎star~):
https://github.com/PaddlePaddle/PaddleHub

PaddleHub旨在为开发人员提供丰富,高质量,可直接使用的预训练模型。开发者无需深度学习背景,便可以快速使用PaddleHub内置的AI模型。其模型涵盖图像,文本,音频和视频的4个主要类别,并支持一键式预测,轻松的服务部署和迁移学习,另外,所有模型都是开源的,可以在离线情况下免费下载和使用。

二、数据集介绍

数据集地址:https://www.kaggle.com/c/state-farm-distracted-driver-detection

该数据集由kaggle提供,共包括十个类别:

    'c0': 'normal driving','c1': 'texting-right','c2': 'talking on the phone-right','c3': 'texting-left','c4': 'talking on the phone-left','c5': 'operating the radio','c6': 'drinking','c7': 'reaching behind','c8': 'hair and makeup','c9': 'talking to passenger'
# 解压数据集(注意要根据环境修改路径——
!unzip /home/aistudio/data/data35503//imgs.zip -d /home/aistudio/work/imgs
!cp /home/aistudio/data/data35503/lbls.csv /home/aistudio/work/

三、模型开发

1.安装PaddleX

!pip install paddlex -i https://mirror.baidu.com/pypi/simple
import os
# 设置使用0号GPU卡(如无GPU,执行此代码后仍然会使用CPU训练模型)
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# jupyter中使用paddlex需要设置matplotlib
import matplotlib
import os
os.chdir('/home/aistudio/work/')
matplotlib.use('Agg') 
import paddlex as pdx

2.定义数据加载器

这里主要是通过 pdx.datasets.ImageNet 类定义用于识别任务的数据加载器;

import paddlehub as hub
import paddle.fluid as fluid
import numpy as npbase = './imgs/'datas = []
for i in range(10):c_base = base+'train/c{}/'.format(i)for im in os.listdir(c_base):pt = os.path.join('train/c{}/'.format(i), im)line = '{} {}'.format(pt, i)# print(line)datas.append(line)np.random.seed(10)
np.random.shuffle(datas)total_num = len(datas)
train_num = int(0.8*total_num)
test_num = int(0.1*total_num)
valid_num = total_num - train_num - test_numprint('train:', train_num)
print('valid:', valid_num)
print('test:', test_num)with open(base+'train_list.txt', 'w') as f:for v in datas[:train_num]:f.write(v+'\n')with open(base+'test_list.txt', 'w') as f:for v in datas[-test_num:]:f.write(v+'\n')with open(base+'val_list.txt', 'w') as f:for v in datas[train_num:-test_num]:f.write(v+'\n')with open(base+'labels.txt', 'w') as f:for i in range(10):f.write('ch{}\n'.format(i))
train: 17939
valid: 2243
test: 2242
from paddlex.cls import transforms
train_transforms = transforms.Compose([transforms.ResizeByShort(short_size=256),transforms.RandomCrop(crop_size=224),transforms.RandomDistort(),transforms.Normalize()
])
eval_transforms = transforms.Compose([transforms.ResizeByShort(short_size=256),transforms.CenterCrop(crop_size=224),transforms.Normalize()
])
train_dataset = pdx.datasets.ImageNet(data_dir='imgs',file_list='imgs/train_list.txt',label_list='imgs/labels.txt',transforms=train_transforms,shuffle=True)
eval_dataset = pdx.datasets.ImageNet(data_dir='imgs',file_list='imgs/val_list.txt',label_list='imgs/labels.txt',transforms=eval_transforms)
2021-03-12 17:20:08 [INFO]	Starting to read file list from dataset...
2021-03-12 17:20:08 [INFO]	17939 samples in file imgs/train_list.txt
2021-03-12 17:20:08 [INFO]	Starting to read file list from dataset...
2021-03-12 17:20:08 [INFO]	2243 samples in file imgs/val_list.txt
num_classes = len(train_dataset.labels)
print(num_classes)
10

3.模型训练

# 定义并训练模型
model = pdx.cls.MobileNetV3_small_ssld(num_classes=num_classes)
model.train(num_epochs=20,train_dataset=train_dataset,train_batch_size=32,log_interval_steps=20,eval_dataset=eval_dataset,lr_decay_epochs=[1],save_interval_epochs=1,learning_rate=0.01,save_dir='output/mobilenetv3')
2021-03-12 22:53:09 [INFO]	[TRAIN] Epoch=20/20, Step=500/560, loss=0.117403, acc1=0.96875, acc5=1.0, lr=0.001, time_each_step=1.7s, eta=0:2:40
2021-03-12 22:53:43 [INFO]	[TRAIN] Epoch=20/20, Step=520/560, loss=0.057465, acc1=1.0, acc5=1.0, lr=0.001, time_each_step=1.68s, eta=0:2:5
2021-03-12 22:54:12 [INFO]	[TRAIN] Epoch=20/20, Step=540/560, loss=0.521278, acc1=0.84375, acc5=0.96875, lr=0.001, time_each_step=1.44s, eta=0:1:27
2021-03-12 22:54:37 [INFO]	[TRAIN] Epoch=20/20, Step=560/560, loss=0.20346, acc1=0.9375, acc5=1.0, lr=0.001, time_each_step=1.29s, eta=0:0:58
2021-03-12 22:54:37 [INFO]	[TRAIN] Epoch 20 finished, loss=0.297043, acc1=0.89721, acc5=0.986719, lr=0.001 .
2021-03-12 22:54:37 [INFO]	Start to evaluating(total_samples=2243, total_steps=71)...
100%|██████████| 71/71 [00:57<00:00,  1.23it/s]
2021-03-12 22:55:35 [INFO]	[EVAL] Finished, Epoch=20, acc1=0.988854, acc5=1.0 .
2021-03-12 22:55:35 [INFO]	Model saved in output/mobilenetv3/best_model.
2021-03-12 22:55:36 [INFO]	Model saved in output/mobilenetv3/epoch_20.
2021-03-12 22:55:36 [INFO]	Current evaluated best model in eval_dataset is epoch_20, acc1=0.9888542131074454

4.导出预测模型

!paddlex --export_inference --model_dir=output/mobilenetv3/best_model --save_dir=inference_model

5.评估模型性能

save_dir = 'output/mobilenetv3/best_model'
model = pdx.load_model(save_dir)
model.evaluate(eval_dataset, batch_size=1, epoch_id=None, return_details=False)
2020-05-18 09:25:35 [INFO]	Model[MobileNetV3_small_ssld] loaded.
2020-05-18 09:25:35 [INFO]	Start to evaluating(total_samples=2243, total_steps=2243)...
100%|██████████| 2243/2243 [00:58<00:00, 38.38it/s]
OrderedDict([('acc1', 0.9790459206419974), ('acc5', 1.0)])

四、模型转换

这里我们需要将PaddleX训练得到的模型转换成PaddleHub的Module

PaddleX模型可以快速转换成PaddleHub模型,只需要用下面这一句命令即可:

!hub convert --model_dir work/inference_model \--module_name DriverStatusRecognition \--module_version 1.0.0 \--output_dir outputs

转换成功后的模型保存在outputs文件夹下,我们解压一下:

!gzip -dfq outputs/DriverStatusRecognition.tar.gz
!tar -xf outputs/DriverStatusRecognition.tar

五、模型预测

安装我们刚刚转换的模型:

!hub install DriverStatusRecognition
[2021-03-13 12:09:07,593] [    INFO] - Successfully uninstalled DriverStatusRecognition
[2021-03-13 12:09:07,785] [    INFO] - Successfully installed DriverStatusRecognition-1.0.0

实时检测驾驶员状态,从视频流中抽帧:

import cv2
import paddlehub as hubmodule = hub.Module(directory='DriverStatusRecognition') # 一行代码实现模型调用images = [cv2.imread('work/imgs/test/img_1622.jpg'), cv2.imread('work/imgs/test/img_14165.jpg'), cv2.imread('work/imgs/test/img_47183.jpg')]
results = module.predict(images=images)for result in results:
images)for result in results:print(result)
[2021-03-13 12:24:04,960] [ WARNING] - The _initialize method in HubModule will soon be deprecated, you can use the __init__() to handle the initialization of the object[{'category_id': 5, 'category': 'ch5', 'score': 0.47390476}]
[{'category_id': 2, 'category': 'ch2', 'score': 0.99997914}]
[{'category_id': 1, 'category': 'ch1', 'score': 0.99996376}]

六、总结与升华

根据CDC机动车安全部门的说法,五分之一的车祸 是由分心的驾驶员引起的。令人遗憾的是,每年因分心驾驶而导致的425,000人受伤和3,000人死亡。

希望能通过检测驾驶员的行为,从而改善上面这些令人震惊的统计数据,提醒驾驶员专心驾驶,减少交通事故的发生。

个人简介

北京联合大学 机器人学院 自动化专业 2018级 本科生 郑博培
百度飞桨开发者技术专家 PPDE
百度飞桨官方帮帮团、答疑团成员
深圳柴火创客空间 认证会员
百度大脑 智能对话训练师
阿里云人工智能、DevOps助理工程师

我在AI Studio上获得至尊等级,点亮9个徽章,来互关呀!!!

https://aistudio.baidu.com/aistudio/personalcenter/thirdview/147378

这篇关于【PaddleHub模型贡献】一行代码实现驾驶员状态识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747863

相关文章

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

IDEA中新建/切换Git分支的实现步骤

《IDEA中新建/切换Git分支的实现步骤》本文主要介绍了IDEA中新建/切换Git分支的实现步骤,通过菜单创建新分支并选择是否切换,创建后在Git详情或右键Checkout中切换分支,感兴趣的可以了... 前提:项目已被Git托管1、点击上方栏Git->NewBrancjsh...2、输入新的分支的

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性: