[C++]直接访问float变量内存的类,addEpison和subEpison、almostEqual约等于,及浮点数排序函数。从此忘记0.000001 再也不要使用FLT_EPSILON!

本文主要是介绍[C++]直接访问float变量内存的类,addEpison和subEpison、almostEqual约等于,及浮点数排序函数。从此忘记0.000001 再也不要使用FLT_EPSILON!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

探究浮点数奥秘,这里给出一个直接访问float变量内存的类,二进制兼容float,
并给出addEpison和subEpison两个函数
而这两个函数,是模糊比较所需要的方法的基础。

//负数时随着内存值int变大,浮点值绝对值越大
// 80000000   →→→ bf800000  →  ff7fffff  ff800000  ff800001 ffffffff
//    -0       渐变     -1    渐变   -MAX    -INF       -Nan      -Nan
// 
// 正数时随着内存值int变大,浮点值绝对值越大
// 00000000   →→→ 3f800000  →  ff7fffff  7f7fffff  7f800001 7fffffff
//    +0       渐变     +1    渐变   +MAX    +INF       +Nan      +Nan//从负到正遍历浮点数的方法:  ff800000 -> 80000000, 00000000 -> 7f7fffff
//                              -INF         -0        +0         +INFstruct Float
{union{struct{unsigned int Mantissa : 23;unsigned int Exponent : 8;unsigned int Sign : 1;};struct {unsigned int withoutSign : 31;unsigned int : 1;};int _memoryInt = 0;float _float;};operator float&() { return _float; }operator const float&() const { return _float; }operator float() const { return _float; }Float() = default;Float(float f) : _memoryInt((int&)f){}bool equalZero() { return withoutSign == 0; }bool isNan() { return Exponent == 0xFF && Mantissa != 0; }//是正无穷大bool isINF_P() { return _memoryInt == 0x7F800000; }//是负无穷大bool isINF_N() { return _memoryInt == 0xFF800000; }//是无穷大bool isINF_PN() { return (_memoryInt & 0x7F800000) == 0x7F800000; }//非数值void makeNan() { _memoryInt = 0x7FFFFFFF; } //正Nan中内存值最大的//正无穷大void makeINF_P() { _memoryInt = 0x7F800000; }//负无穷大void makeINF_N() { _memoryInt = 0xFF800000; }void makeMax()      { _memoryInt = 0x7F7FFFFF; }void makeMax_N()    { _memoryInt = 0xFF7FFFFF; }void makeMin()      { _memoryInt = 0x00800000; }    //最小值1.1754943510e-38(0x00800000), 次小值1.175494491e-38(0x00800001)void makeMin_N()    { _memoryInt = 0x80800000; }void makeTrueMin() { _memoryInt = 0x00000001; }     //最小值1.4012984643e-45F(0x00000001),次小值2.803e-45  2.8025969286496341e-45 (0x00800002)void makeTrueMin_N() { _memoryInt = 0x80000001; }//增加一个极小值,使得比当前值大;+max,+/-INF,+/-Nan不受影响void addEpison(){if ((unsigned int)_memoryInt >= 0xFF800000u) return; //负无穷大,负Nanif (_memoryInt >= 0x7F7FFFFF) return; //正最大值,正无穷大,正Nanif (_memoryInt == 0x80000000)   //负0_memoryInt = 0x00000001;    //TrueMinelse{_memoryInt += 1 - ((_memoryInt<0)<<1);}}//减少一个极小值,是的比当前值小void subEpison() {if ((unsigned int)_memoryInt >= 0xFF800000u) return; //负最大值,负无穷大,负Nanif (_memoryInt >= 0x7F800000) return; //正无穷大,正Nanif (_memoryInt == 0x00000000)   //正0_memoryInt = 0x80000001;    //TrueNegMinelse{_memoryInt -= 1 - ((_memoryInt < 0) << 1);}}bool almostEqual(const Float& other, unsigned int episonCount) const{if (((unsigned int)_memoryInt >= 0xFF800000u) || (_memoryInt >= 0x7F800000)|| ((unsigned int)other._memoryInt >= 0xFF800000u) || (other._memoryInt >= 0x7F800000))return _float == other._float; //无穷大,Nanint absA = _memoryInt < 0 ? 0x80000000 - _memoryInt : _memoryInt;int absB = other._memoryInt < 0 ? 0x80000000 - other._memoryInt : other._memoryInt;return (episonCount + unsigned int(absA - absB)) <= (episonCount << 1);}
};
    Float a = 1.f / 3;Float b = 0.5f - 1.f / 6;a += a;b += b;{bool test = a == b;puts(test ? "true" : "false");  //false}{bool test = a.almostEqual(b, 1); //一个精度差距?puts(test ? "true" : "false");  //true}{Float A = a;A.addEpison(); //手动增加一个精度差距bool test = A.almostEqual(b, 1); //一个精度差距?puts(test ? "true" : "false");  //false}{Float A = a;A.addEpison(); //手动增加一个精度差距bool test = A.almostEqual(b, 2); //二个精度差距?puts(test ? "true" : "false");  //true}{Float x1 = a, x2 = a;x1.addEpison();x2.subEpison();bool test2 = a == b || x1 == b || x2 == b;puts(test2 ? "true" : "false"); //true}

下面给出一个浮点数排序函数,使用他能正确使包含无穷大、Nan的浮点数组成功排序

[](float a, float b) {bool isnanA = isnan(a), isnanB = isnan(b);if (isnanA || isnanB){if (!isnanB){return ((int&)a & 0x80000000) != 0;}if (!isnanA){return ((int&)b & 0x80000000) == 0; }if (((int&)a < 0) != ((int&)b < 0))return (int&)a < (int&)b;else //两nan符号相同return (((int&)a & 0x7FFFFF) < ((int&)b & 0x7FFFFF)) != ((int&)a < 0);}if ((int&)a == (int&)b)return false;else if (a < b)return true;else if (b < a)return false;elsereturn (int&)a < (int&)b;}

这篇关于[C++]直接访问float变量内存的类,addEpison和subEpison、almostEqual约等于,及浮点数排序函数。从此忘记0.000001 再也不要使用FLT_EPSILON!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747505

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL中的InnoDB单表访问过程

《MySQL中的InnoDB单表访问过程》:本文主要介绍MySQL中的InnoDB单表访问过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、访问类型【1】const【2】ref【3】ref_or_null【4】range【5】index【6】