多示例学习 (multi-instance learning, MIL) 学习路线 (归类、重点文章列举、持续更新)

本文主要是介绍多示例学习 (multi-instance learning, MIL) 学习路线 (归类、重点文章列举、持续更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0 要点
  • 1 多示例背景介绍
  • 2 理论MIL概述
    • 2.1 传统MIL方法
    • 2.2 注意力网络
    • 2.3 对比学习
    • 2.4 介入学习
    • 2.5 强化学习
    • 2.6 GAN
  • 3 MIL交叉领域
    • 3.1 多示例偏标签
    • 3.2 多示例多标签
    • 3.3 多示例正和无标签学习
    • 3.4 多示例对抗攻击及防御
    • 3.5 多示例分布外检测
    • 3.6 多模态多示例
  • 4 应用MIL概述
    • 4.1 全幻灯片分类
    • 4.2 视频异常检测
    • 4.3 图像分类
    • 4.4 调制识别
    • 4.5 Benchmark

0 要点

说明:本文在于能够让大家能够更加快速地了解MIL这个领域,因此将从以下几个方面重点介绍MIL (这里不详细介绍每一篇文章,只做概述)。

注1:欢迎和我进一步交流,可以加入我建立的QQ群 (2024年1月15日建立,没啥人hhh);
注2:如果给出的文章包含代码,可以点击其名称缩写获取;
注3:承2,如果包含博客讲解,可以点击其全称获取;

1 多示例背景介绍

概述:多示例学习 (MIL) 是一种典型的弱监督学习,其输入的单个样本被称为 (bag),包中包含多个实例 (instance)。在训练阶段,通常只有包的标签可知,而实例的标签不可知或者获取成本极高。因此,概括性的,MIL与传统机器学习的主要区别在于:

  1. 弱监督场景:实例的数量巨大却没有标签,仅通过包标签来预测未知类,甚至预测实例标签是极具挑战性的;
  2. 数据结构:包是多个实例的集合,实例可以是向量、图像、视频等任意结构,因此传统机器学习可以看作是MIL的一种特殊情况;

纵观MIL发展历程,其可以分为几个阶段:

  1. 早期:从Dietterich团队的药物活性预测研究开始,尝试直接使用传统的机器学习方法解决MIL问题;
  2. 发展:尝试MIL问题的转换,通常使用嵌入函数或包相似性度量来将其简化为传统的机器学习问题;
  3. 深度:利用深度学习的强大特征提取及表征能力,直接预测包的标签,这也是目前MIL研究的重点;
  4. 应用:考虑更多背景信息,如视频的时序、医疗图像相邻区块的关联性,以更好地处理实际任务;

2 理论MIL概述

之所以优先介绍传统MIL方法,究其原因为:

  1. 传统MIL方法包含众多实用策略,其思想内核至今仍被前沿的深度MIL方法使用;
  2. 传统方法均可被深度MIL直接或间接复刻,通过对齐首要了解,可以为后续深度MIL方法学习打下基础;

2.1 传统MIL方法

传统MIL方法大致分为三种:

  1. 实例方法:首先预测实例标签,并通过MIL假设计算包标签;
  2. 包方法:设计类似于高斯核的MIL包距离度量,使得 k k kNN和SVM等基于距离矩阵的方法得以施展;
  3. 嵌入方法:将包转换为向量,使得传统机器学习策略生效,这也是目前MIL表征学习的基础;

当然,立足于深度MIL方法的小伙伴只需大致了解这类方法。以下是对一些经典方法的归类:

方法名团队期刊/会议全称思想领域
MINTL广东工业大学TNNLS’24Multi-instance nonparallel tube learning基于优化理论的类边界信息学习,以提升模型性能理论
ISK周志华KDD‘19Isolation set-kernel and its application to multi-instance learning基于孤立核设置集合核和嵌入函数理论
MILDM悉尼科技大学TKDE’18Multi-instance Learning with discriminative bag mapping利用辨别性优化嵌入结果理论
miVLAD周志华TNNLS’16Scalable algorithms for multi-instance learning基于 k k kMeans聚类的高效MIL算法理论
miFV周志华ICDM’14Scalable multi-instance learning混合高斯模型及Fisher核编码包为向量理论
BAMIL周志华Applied Intelligence’09Multi-instance clustering with applications to multi-instance prediction利用包距离度量和 k k kMeans聚类获取包嵌入向量理论

2.2 注意力网络

注意力机制的引入是深度MIL发展史上的一次伟大变革,其以Ilse等人发表的ABMIL和GAMIL为伊始,并深刻影响着后续MIL算法的发展。后续的基于对比学习、介入学习等策略的MIL大都围绕其展开,只是方法的侧重有所不同:

方法名团队期刊/会议全称思想领域
IBMIL上海交通大学CVPR’23Interventional bag multi-instance learning on whole-slide pathological images基于训练模型和 k k kMeans的全局特征提取WSI
MHIM-MIL香港科技大学CVPR’23Multiple instance learning framework with masked hard instance mining基于蒙版硬实例和软实例的孪生网络WSI
ItS2CLR纽约大学CVPR’23Multiple instance learning via iterative self-paced supervised contrastive learning实例伪标签提升表示学习质量,并通过自步采用策略优化WSI
CHEESE大连理工大学IEEE TCDS’23Multiple instance learning for cheating detection and localization in online examinations综合被检测人员的眼睛注视、头部姿势和面部特征等信息来学习模型VAD
LNPL-MIL清华大学ICCV’23LNPL-MIL: Learning from noisy pseudo labels for promoting multiple instance learning in whole slide image提出了一种更准确的Top- k k k实例选择策略,并设计了一个能够感知实例顺序和分布的TransformerWSI
CausalMIL东南大学NeurIPS’22Multi-instance causal representation learning for instance label prediction and out-of-distribution generalization获得实例级因果表示并考虑OOD问题理论
ZoomMILIBM 欧洲研究院ECCV’22Differentiable zooming for multiple instance learning on whole-slide images多尺度WSI同时输入WSI
DSMIL威斯康星大学CVPR’21Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning双流架构及自监督对比学习WSI
TransMIL清华大学NeurIPS‘21TransMIL: Transformer based correlated multiple instance learning for whole slide image classification基于Transformer的相关型MIL框架WSI
LAMIL佛罗里达大学AAAI’20Loss-based attention for deep multiple instance learning额外添加实例损失优化模型且提供理论证明理论
ABMIL&GAMIL阿姆斯特丹大学ICML’18Attention-based deep multiple instance learning设计了两种注意力机制来捕捉包中的关键实例理论

2.3 对比学习

方法名团队期刊/会议全称思想领域
ItS2CLR纽约大学CVPR’23Multiple instance learning via iterative self-paced supervised contrastive learning实例伪标签提升表示学习质量,并通过自步采用策略优化WSI
SMILES东北大学AAAI’23Robust self-supervised multi-instance learning with structure awareness引入无监督对比学习来获取包表示理论

2.4 介入学习

方法名团队期刊/会议全称思想领域
IBMIL上海交通大学CVPR’23Interventional bag multi-instance learning on whole-slide pathological images基于训练模型和 k k kMeans的全局特征提取WSI

2.5 强化学习

2.6 GAN

3 MIL交叉领域

3.1 多示例偏标签

3.2 多示例多标签

3.3 多示例正和无标签学习

正和无标签学习 (PU) 的训练集中只包含正样本和无标记样本,对应的问题有叶片上的异常结冰检测、诈骗邮件检测等。

方法名团队期刊/会议全称思想领域
PU-MIL-AD鲁汶大学KDD’23Learning from positive and unlabeled multi-instance bags in anomaly detection在MIL中首次引入PU学习的概念,并基于VAE进行异常检测Anomaly Detection

3.4 多示例对抗攻击及防御

考虑MIL的弱监督设置,通过添加对抗扰动的方式愚弄MIL分类器,以解释模型的脆弱性和安全性。此外,对抗防御则用于降低MIL攻击者的效能。

方法名团队期刊/会议全称思想领域
CAF-GAN韩国航空航天大学IEEE TIFS’23A robust open-set multi-instance learning for defending adversarial attacks in digital image基于GAN的对抗防御及数字取证研究Anti-forensic
MI-CAP&MI-UAP西南交通大学PR’23Interpreting vulnerabilities of multi-instance learning to adversarial perturbations首次在MIL中引入对抗攻击,以解释算法的脆弱性,后续可作为数据增强策略等理论

3.5 多示例分布外检测

3.6 多模态多示例

4 应用MIL概述

4.1 全幻灯片分类

4.2 视频异常检测

4.3 图像分类

4.4 调制识别

4.5 Benchmark

这篇关于多示例学习 (multi-instance learning, MIL) 学习路线 (归类、重点文章列举、持续更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_44575152/article/details/135610544
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/747297

相关文章

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

前端高级CSS用法示例详解

《前端高级CSS用法示例详解》在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交互和动态效果的关键技术之一,随着前端技术的不断发展,CSS的用法也日益丰富和高级,本文将深... 前端高级css用法在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s