计组原理 : 计算机可靠性概述和性能评价

2024-02-25 14:58

本文主要是介绍计组原理 : 计算机可靠性概述和性能评价,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 计算机可靠性概述

计算机系统的可靠性指它开始运行( t = 0 )  到某时刻 t 这段时间内能正常运行的概率。 用 R(t) 表示。失效率即单位时间内失效的元件数与总数的比例。用λ表示 

两次故障之间系统能正常工作的时间的平均值称为平均无故障时间(MTTF) 。是衡量一个产品(尤其是电器产品)的可靠性指标。可靠性可以定义为当用户访问服务时,服务按预期运行的可能性。通常用MTTF,来反映无失效运作的概率 即

                                                        MTTF  = 1 / λ

                                                可靠性 =  MTTF/(1+MTTF)

MTBF “平均故障间隔时间”用来表示计算机的可用性。此度量描述服务运行的时间百分比,这也被称为服务的“正常运行时间”,

                                                可用性 =   MTBF/(1+MTBF)

通常用平均修复时间(MTTR)来表示计算机的可维修性(完成维护的概率)。指从故障发生到机器修复平均所需要的时间。因此在计算机任意时刻能正常工作的概率A,可表示为

                                                      A  =  MTTF / (MTTF + MTTR)

                                               可维护性 = 1 /(1+MTTR)

可以看出:

                                                    MTBF  =  MTTF  + MTTR

而 MTTR 远小于MTTF ,因此 MTTF 近似于MTBF。

 例如:在上图中,截止目前某个系统的运行情况如上图,从t0时刻上线起,共故障了3回。

那么 平均无故障时间MTTF =  (1+2+0.5)/3 *365 *24 小时=10220 小时,

        平均故障修复时间MTTR = (12+6+9)/3小时=9小时 

        平均故障间隔时间 MTBF = MTTF +MTTR = 10220 +9小时  =10229小时

如果一个系统有N个子系统,各个子系统的可靠性分别用 Rn 表示 。

对于 串联系统,该系统的可靠性R,可表示为

                R   = R1 × R2  × R3 ...× RN     

失效率  λ 可表示为

              λ     = λ1   + λ2 + λ3 .... +λn

对于并联系统该系统的可靠性R,可表示为

             R    =   1-   (1-R1)(1-R2)(1-R3).....(1-Rn)

失效率  λ 可表示为

       

对于 N模冗余系统 ,N=2n+1个子系统,和一个表决器组成,表决器把N个子系统中占大多数的输出多为系统的输出,因此只要有n+1 个子系统能正常工作。假设表决器完全可靠的,每个子系统可靠性为R0,则N模冗余系统的可靠性为

                 

 注:

例1:一个系统由3个子系统并联构成,其可靠性为0.9,平均无故障时间为10000小时。求系统的可靠性和平均无故障时间

              R1   =R2 =R3 =0.9;

              并联系统的计算机可靠性:R =   1- (1-Ri)^3 =  1  - 0.1 ^3 =0.999

              子系统失效率    λ1 = λ2= λ3=1/10000

               系统失效率  λ   =  1/(1/(1/10000) *(1/1 +1/2 +1/3))

               系统平均无故障时间   MTBF = 1/λ = 1/(1/10000) *(1/1 +1/2 +1/3)  ≈18333小时

例2:对于一个混合系统其可靠性如下:

二、计算机的性能评测的常用方法

1)时钟频率。一般来讲主频越高,速度越快。但是对于频率相同,不同结构的机器,其速度可能差很多。

2)指令执行速度。即单位时间内执行指令的条数。对于不同的指令执行速率不同,但是在早期,通常用加法指令的运算速度来衡量计算机的速度,因为加法大体可以反映出乘法等其他运算速度。

3)等效指令速度法。统计各类指令在程序中所占比例,和各类指令的执行时间,那么等效指令的执行时间为

4)数据处理速率(PDR)法。在不同程序中的各类指令使用步履是不同的,而且数据长度与指令功能的强弱对解题速度影响极大。同时以上的方法不能反应出现代计算机中高速缓冲存储器、流水线和交叉存储等架构影响。因此,现代计算机不仅与指令的执行频率有关,而且与指令的执行顺序和地址分布有关。 PDR 值越大, 性能越好。

                                                PDR   =  L / R

其中 L=0.85G + 0.15H+ 0.4J +0.15K    ;   R =0.85M +0.09N +0.06 P

G:每条定点指令位数     ;                 M:平均定点加法时间        

H::每条浮点指令位数                         N:平均浮点加法时间

J:定点操作数位数                              N:平均浮点乘法时间

K:定点操作数位数

5)核心程序法:把应用程序中用的最频繁的核心不同在不同的机器上运行,测其执行时间。作为各类机器性能评价依据

这篇关于计组原理 : 计算机可靠性概述和性能评价的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745834

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实