系统性训练,励志刷完挑战程序设计竞赛-代码整理43~68【初级篇】

本文主要是介绍系统性训练,励志刷完挑战程序设计竞赛-代码整理43~68【初级篇】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2014年9月4日大概完成到这边了。编写了几天突然感觉到cpp很上手。现在码的速度也提上去了。再见

/*
刚开始不明白到底是干什么的。后来仔细想想,我检查是弱爆了。
简单就是意思就是请求组合n中选m的种,即n的m划分。不重复。使用dp存储。求解组合类问题思路有了吧。当然用组合工程直接求也行。
DP计数:从n物品中划分出m种不同的组合 4
3
100004
*/#include<iostream>
using namespace std;
int n,m,M;
const int MAXN=1<<10;
int dp[MAXN][MAXN];void input(){scanf("%d%d%d",&n,&m,&M);	
}//dp[i][j] j的i划分总数 
void sovle(){dp[0][0]=1;for(int i=1;i<=m;i++)for(int j=0;j<=n;j++){if(j-i>=0)dp[i][j]=(dp[i][j-i]+dp[i-1][j])%M;elsedp[i][j]=dp[i-1][j];}printf("%d\n",dp[m][n]);
}int main(){input();sovle();	return 0;	
}


/*
最后使用stl中的函数快速的求解二分上下限的方法不错。值得学习。5
4 2 3 1 53
*/
#include <iostream>
using namespace std;
const int MAXN=1<<10;
int n,a[MAXN],dp[MAXN],INF=(1<<31)-1;void input(){scanf("%d",&n);int i=0;while(i<n)scanf("%d",&a[i++]);		
}//dp[i],a[i]个元素结尾的最长上升子序列的值void sovle1(){int ans=0;for(int i=0;i<n;i++){dp[i]=1;for(int j=0;j<i;j++){if(a[j]<a[i])dp[i]=max(dp[i],dp[j]+1);	}	ans=max(ans,dp[i]);	}	printf("%d\n",ans);
}void sovle2(){fill(dp,dp+n,INF);for(int i=0;i<n;i++){*lower_bound(dp,dp+n,a[i])=a[i];}printf("%d\n",lower_bound(dp,dp+n,INF)-dp); //数组名dp返回的是数组首地址,l_b方法同样是dp的数组的地址号,相差12/4(int %d输出)=3 printf("%d\n",lower_bound(dp,dp+n,INF));printf("%d\n",dp);
}
int main(){input();sovle1();sovle2();return 0;	
}


/*3
3 5 8
3 2 2
17Yes
*/#include<iostream>
using namespace std;const int MAXN=1<<10;
int n,a[MAXN],m[MAXN],K,dp[MAXN][MAXN];void input(){scanf("%d",&n);int i=0;while(i<n)scanf("%d%d",&a[i],&m[i++]);scanf("%d",&K);	
}//dp[i+1][j]=前i个元素相加和得到j时,i元素的剩余个数
//3类,1:i-1得到j,此时i元素的剩余量为mi
//2:i 前i中加和出j-ai,那么第i种剩余量为k,所以剩余此时i的剩余量为k-1个 
void sovle(){memset(dp,-1,sizeof(dp));dp[0][0]=0; //初始化for(int i=0;i<n;i++)for(int j=0;j<=K;j++){if(dp[i][j]>=0){  //说明i-1之和=j了。 i+1对应的是i剩余m[i] dp[i+1][j]=m[i];}else if(j<a[i] || dp[i+1][j-a[i]]<=0){ //j<a[i]不满足选择a[i],dp[i+1][j-a[i]]<=0即前i元素之和等于j-a[i]时,i的元素剩余量<=0。所以dp[i+1][j]=-1;即不能选 dp[i+1][j]=-1;}else{dp[i+1][j]=dp[i+1][j-a[i]]-1;  //dp[i+1][j-a[i]] ,前i种加和j-a[i]时,i的剩余量>0,那么dp[i+1][j]=K-1了。 }	}/* for(int i=0;i<=n;i++){for(int j=0;j<=K;j++){printf("%d ",dp[i][j]); }printf("\n");	}*/if(dp[n][K]>=0)printf("Yes\n");elseprintf("No\n");}int main(){input();sovle();		return 0;
}


/*
如果w数值范围较大,需要转换dp。即将内层循环次数最小,价值v代替 
//dp[i+1][j],挑选前i个物品的总价值j时,总重量的最小值 4
2 3
1 2
3 4
2 2
57
*/#include<iostream>
using namespace std;
const int MAX_N=100,MAX_V=100;
const int MAXN=1<<20;
int n,W,w[MAXN],v[MAX_V],dp[MAX_N+1][MAX_N*MAX_V+1];int INF=1<<11;void input(){scanf("%d",&n);int i=0;while(i<n)scanf("%d%d",&w[i],&v[i++]);scanf("%d",&W);	}void sovle(){fill(dp[0],dp[0]+MAX_N*MAX_V+1,INF);dp[0][0]=0;for(int i=0;i<n;i++){for(int j=0;j<=MAX_N*MAX_V;j++){if(j<v[i])dp[i+1][j]=dp[i][j];elsedp[i+1][j]=min(dp[i][j],dp[i][j-v[i]]+w[i]);}}int ans=0;for(int i=0;i<=MAX_N*MAX_V;i++){//printf("%d  ",dp[n][i]);if(dp[n][i]<=W) ans=i;}printf("%d\n",ans);}int main(){input();sovle();	return 0;	
}


/*
下面是三种不同的技巧。不过答案是14.不是书上的10.难道我错了?
话说完全背包与01背包状态转移一样。3
3 4
4 5
2 3
710
*/ 
#include<iostream>
using namespace std;
const int MAXN=1<<10;
int n,W,w[MAXN],v[MAXN],dp[MAXN][MAXN],dpp[MAXN];void input(){scanf("%d",&n);int i=0;while(i<n)scanf("%d%d",&w[i],&v[i++]);scanf("%d",&W);	
}
//从前i种物品挑选总重量小于j时的总价值最大,此时与01背包问题相同 
//dp[i+1][j]=dp[i][j];
//dp[i+1]][j]=max(dp[i][j],dp[i+1][j-w[i]]+v[i]);
void sovle1(){for(int i=0;i<n;i++)for(int j=0;j<=W;j++){if(j<w[i])dp[i+1][j]=dp[i][j];elsedp[i+1][j]=max(dp[i][j],dp[i+1][j-w[i]]+v[i]);//dp[i+1][j]=(j<w[i])?dp[i][j]:max(dp[i][j],dp[i+1][j-w[i]]+v[i]);} printf("%d\n",dp[n][W]);
}//重复利用数组 
void sovle2(){for(int i=0;i<n;i++)for(int j=w[i];j<=W;j++){dpp[j]=max(dpp[j],dpp[j-w[i]]+v[i]);}printf("%d\n",dpp[W]);	
}//滚动二维数组,类似dp[2][MAXN] ,x=x&1,交叉奇偶 
void sovle3(){memset(dp,0x00,sizeof(dp));for(int i=0;i<n;i++)for(int j=0;j<=W;j++){if(j<w[i])dp[(i+1)&1][j]=dp[i&1][j];elsedp[(i+1)&1][j]=max(dp[i&1][j],dp[(i+1)&1][j-w[i]]+v[i]);//dp[i+1][j]=(j<w[i])?dp[i][j]:max(dp[i][j],dp[i+1][j-w[i]]+v[i]);} printf("%d\n",dp[n&1][W]);} int main(){input();sovle1();sovle2();sovle3();	return 0;
}


/*
2014阿里巴巴笔试题有一道是关于最长公共子序列lcp问题的,不过也可以转化为lcs问题。请看下面的方法就明白了。经典dp:lcs问题 
si+1=tj+1  dp[i+1][j+1]=dp[i][j]+1;此处另外三项相等
其他  dp[i+1][j+1]=max(dp[i+1][j],dp[i][j+1]);选择(si+1,ti),(si,ti+1)2个子串中的的最大值 4
4
abcd
becd3
2
*/
#include <iostream>
using namespace std;
const int MAXN=1<<10;
char s[MAXN],t[MAXN];
int n,m,dp[MAXN][MAXN];void input(){scanf("%d%d",&n,&m);scanf("%s%s",&s,&t);
}//求解dp[n][m] ,lcs问题 
void sovle1(){for(int i=0;i<n;i++){for(int j=0;j<m;j++){if(s[i]==t[j])dp[i+1][j+1]=dp[i][j]+1;elsedp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);}}printf("%d\n",dp[n][m]);
}//求解lcs连续公共子串 
void sovle2(){memset(dp,0x00,sizeof(dp));int max=0;for(int i=0;i<n;i++){for(int j=0;j<m;j++){if(s[i]==t[j]){dp[i+1][j+1]=dp[i][j]+1;max=max<dp[i+1][j+1]?dp[i+1][j+1]:max;//printf("%d\n",max);	}else{dp[i+1][j+1]=0;	//非连续=0	}		}}/*for(int i=0;i<=n;i++){for(int j=0;j<=m;j++){printf("%d ",dp[i][j]);	}printf("\n");}*/printf("%d\n",max);}int main(){input();sovle1();sovle2();return 0;
}


 /*
使用dp的时候一定要确定好状态,以及转移代价。然后求解dp。求解dp一般从边界开始递推,多的情况下有n^3次的复杂度求解。普通的dp为n^2,内层循环尽量大,
外层循环尽量小,可以减少cpu的切换,还有提高缓存命中率,一定程度上在机器本身上减少了运行代价。编程艺术上面都这么来的,其实书上写的也有局限性,只是作者没有
注意到实际情况。不过这样来写只是根据不同的编译器确定的。因为锅测试了下。如果不开编译器优化,基本没有差距。有的情况下还会有相反代价的运行。
看来有时候真的需要实践,实践是检验真理唯一标准,。一定木错。4
2 3
1 2
3 4
2 2
57
*/
#include<iostream>
using namespace std;
const int MAXN=1<<7;
int w[MAXN],v[MAXN],n,W,dp[MAXN][MAXN]; void input(){scanf("%d",&n);int i=0;while(i<n){scanf("%d %d",&w[i],&v[i]);i++;	}//while(--i>=0)printf("--%d %d\n",w[i],v[i]);	scanf("%d",&W);
}
//从第i件物品挑选小于j的重量 
int rec(int i,int j){if(dp[i][j]>=0) return dp[i][j];int res;if(i==n) res=0;else if(j<w[i]){res=rec(i+1,j);}else{//选择与不选择 res=max(rec(i+1,j),rec(i+1,j-w[i])+v[i]); 	}return dp[i][j]=res;
}//枚举 
void sovle1(){memset(dp,-1,sizeof(dp));printf("%d\n",rec(0,W));		
}//dp[i][j] ,从第i个物品挑选出总重量小于j时,总价值最大, 
void sovle2(){//memset(dp,0,sizeof(dp));for(int i=0;i<=W;i++){dp[n][i]=0;}for(int i=n-1;i>=0;i--)for(int j=0;j<=W;j++){if(j<w[i]){dp[i][j]=dp[i+1][j];  //上,右方向计算dp 			} else{dp[i][j]=max(dp[i+1][j],dp[i+1][j-w[i]]+v[i]);  //[]扩错第二个参数,尼玛,调试半个小时,坑死我了 //第二个参数思维方向为递归选择最大值,保持dp[i][j]的价值总和最大 }			}			printf("%d\n",dp[0][W]);for(int i=0;i<n;i++){for(int j=0;j<=W;j++){printf("%d ",dp[i][j]);}	printf("\n");}
}//dp[i+1][j],从前i个物品挑选出总重量不超过j物品的总价值最大 
void sovle3(){memset(dp,0,sizeof(dp));for(int i=0;i<n;i++)for(int j=0;j<=W;j++){if(j<w[i])dp[i+1][j]=dp[i][j];else dp[i+1][j]=max(dp[i][j],dp[i][j-w[i]]+v[i]);}printf("%d\n",dp[n][W]);
}int main(){input();sovle1();sovle2();	sovle3();return 0;
}


/*
修理栅栏,话说还用优先队列priority_queue存来维护最小值还是不错的。毕竟底层是二叉堆logn的代价
贪心策略:总的开销为所有的叶子节点的代价长度*深度之和。所以最短的板是叶子最深的节点,
次短的板是其兄弟节点。一直合并到根部即可 3
8 5 834
*/#include<iostream>
using namespace std;
const int MAXN=1<<11;
int N,L[MAXN];
typedef long long ll;void input(){scanf("%d",&N);int i=0;while(i<N){scanf("%d",&L[i++]);}	
}void sovle(){ll ans=0;while(N>1){int min1=0,min2=1;if(L[min1]>L[min2]) swap(min1,min2);for(int i=2;i<N;i++){if(L[i]<L[min1]){min2=min1;min1=i;}else if(L[i]<L[min2]){min2=i;}}	//合并 int t=L[min1]+L[min2];ans+=t;//将N-1的值转移到min2中,t转移到min1if(min1==N-1) swap(min1,min2);L[min1]=t;		L[min2]=L[N-1];	N--;	 	}	printf("%lld\n",ans);}int main(){input();sovle();return 0;
}


/*
囧,nn复杂度
贪心策略:向前走,R内最右侧,R外最近侧,循环至n结束即可 6
10
1 7 15 20 30 503
*/
#include<iostream>
using namespace std;
const int MAXN=1<<7;
int x[MAXN],n,r;void input(){scanf("%d",&n);scanf("%d",&r);int i=0;while(i<n){scanf("%d",&x[i++]);}		
}void sovle1(){int ans=0,a=0,f;sort(x,x+n);int cyc=-1; //防止过界循环标记 while(a<n){for(int i=a;i<n;i++){if(x[i]>(x[a]+r)){f=i-1;//printf("%d ",x[f]);break;	}}ans++;	for(int i=f;i<n;i++){if(x[i]>(x[f]+r)){a=i;if(cyc==a) goto loop ;	 cyc=a;//printf("%d ",a);break;}   }}loop:printf("%d\n",ans);	
}	void sovle2(){int i=0,ans=0;while(i<n){int s=x[i++];//s是没有覆盖的最左边的点 //一直向右前进到距离大于R的点 while(i<n && x[i]<=s+r)i++;int P=x[i-1];//标记点//一直向右前进至R之后未标记的点while(i<n&& x[i]<=P+r)i++;ans++;}printf("%d\n",ans);
}int main(){input();sovle1();sovle2();	return 0;
}


/*
贪心策略:比较s与s的逆序,较小者取其头部加入T即可 
6
ACDBCBABCBCD
*/
#include<iostream>
using namespace std;
const int MAXN=1<<8;
char s[MAXN];
int n;void input(){scanf("%d",&n);scanf("%s",&s);	
}
void sovle(){int a=0,b=n-1;bool f=true;while(a<=b){//判断取值左右 for(int i=0;i<n;i++){if(s[a+i]<s[b-i]){f=true;	break;}else if(s[a+i]>s[b-i]){f=false;break;}}if(f==true) printf("%c",s[a++]);else printf("%c",s[b--]);	}
}int main(){input();sovle();return 0;
}


这篇关于系统性训练,励志刷完挑战程序设计竞赛-代码整理43~68【初级篇】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745346

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...