密码库LibTomCrypt学习记录——(2.21)分组密码算法的工作模式——F8加密模式

本文主要是介绍密码库LibTomCrypt学习记录——(2.21)分组密码算法的工作模式——F8加密模式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  1. F8

F8和F9用在3G安全中的是机密性算法(f8)和完整性算法(f9),两者都是基于KASUMI算法构造。f8是变形的OFB模式的序列密码;而f9则是变形CBC-MAC模式的消息认证码。

KASUMI算法是日本三菱的Matsui等人基于MISTY算法设计的分组密码。分组大小64bit,密钥长度128bit。由于算法内部大量的使用了16bit的运算,因此最适合16bit处理器实现。   

F8是以流密码的形式进行工作的,即源源不断的产生密码流,密钥流与密文异或就是加密,密钥流与密文异或就是解密。

  1. F8算法

输入

  1. COUNT         32 bit           计数器
  2. BEARER    5 bit       
  3. DIRECTION  1 bit         
  4. CK               128 bit         密钥
  5. LENGTH  *             加解密信息长度可以是 1 - 5114bit
  6. IBS         1-5114 bit    输入流

输出

  1. OBS        1-5114 bit         输出流

Step 1. 初始化

寄存器A = COUNT || BEARER || DIRECTION || 0…0 ,即末尾添加26bit的0

KM = 0x55555555555555555555555555555555 (128bit的密钥掩盖数)

KSB0 = 0

A = KASUM(A)CK XOR KM

Step 2. 密钥流的生成

BLOCKS = LENGTH/64的向上取整(为了使最后一个可能不完整的分组也能得到密钥流)

for(i = 1; i <= BLOCKS; i++ )

{

}

生成的密钥流为KS

KS[((n-1)*64)+i] = KSBn[i] , n = 1 … BLOCKS, i = 0 … 63 //bit级的表示

Step 3 加解密

for(i = 0; i <= LENGTH; i++ )

{

OBS[i] = IBS[i] XOR KS[i] //bit级的异或

}

F8的密钥流生成图如下

F8的密钥流生成图

  1. LibTomCrypt与F8

LibTomCrypt里的F8与3G文档里面的描述有些出入:

  1. 加密算法不一定使用KASUMI,比如其测试函数中使用的是AES。这样就使得分组大小不再是64bit,而是128bit。
  2. f8_start()函数里的输出值IV就是文档中的寄存器A的初始化值,即调用者需在调用f8_start()之前自行完成IV = A = COUNT || BEARER || DIRECTION || 0…0 。
  3. 初始化阶段,文档中的描述为A = KASUM(A)CK XOR KM,LibTomCrypt里面是加密A用的密钥不是CK XOR KM(KM = 0x55…55,128bit)而是CK XOR (salt||0x555…55),测试程序中的salt为32bit,链接的0x555…55为96bit

涉及信息如下:

F8的结构体是

typedef struct {

   int cipher;                      

   int blocklen;

   int padlen; /** The padding offset */

   unsigned char IV[MAXBLOCKSIZE],    // KSB_i 即最新得到的密钥流分组

   unsigned char MIV[MAXBLOCKSIZE]; // 寄存器 A,

   ulong32 blockcnt; // 分组计数器 同文档   /** Current block count */

   symmetric_key key;

} symmetric_F8;

相关函数有:

int f8_start( int cipher, const unsigned char *IV, const unsigned char *key, int keylen, const unsigned char *salt_key, int skeylen, int num_rounds, symmetric_F8 *f8);

int f8_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_F8 *f8);

int f8_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_F8 *f8);

int f8_getiv(unsigned char *IV, unsigned long *len, symmetric_F8 *f8);

int f8_setiv(const unsigned char *IV, unsigned long len, symmetric_F8 *f8);

int f8_done(symmetric_F8 *f8);

int f8_test_mode(void);

──────────────────────────────────────

int f8_start( int cipher, const unsigned char *IV, const unsigned char *key, int keylen, const unsigned char *salt_key, int skeylen, int num_rounds, symmetric_F8 *f8);

// [功能]   初始化F8

  1. cipher           // [输入] 密码算法
  2. IV                // [输入] 初始化值
  3. key                   // [输入] 密钥
  4. keylen          // [输入] 密钥长度
  5. salt_key            // [输入] 密钥调整值
  6. skeylen             // [输入] salt_key长度
  7. num_rounds      // [输入] 密码算法工作轮数(建议设置为0以使用默认的AES轮数)
  8. f8                // [输入/输出] F8状态

//备注:主要完成A = CIPHER(A)CK XOR KM,这里加密A用的密钥不是CK XOR KM(KM = 0x55…55,128bit)而是CK XOR (salt||0x555…55)

──────────────────────────────────────

──────────────────────────────────────

int f8_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_F8 *f8);

// [功能]   加密

  1. pt                // [输入]明文
  2. ct                // [输出]密文
  3. len               // [输入]明密文长度
  4. f8                // [输入/输出] F8状态

//备注:由于采用的是流密码的工作方式,所以加密流程和解密流程一样,

//       关键流程在密钥流的生成

──────────────────────────────────────

──────────────────────────────────────

int f8_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_F8 *f8);

// [功能]   解密

  1. ct                // [输入] 密文
  2. pt                // [输出] 明文
  3. len               // [输入] 明密文长度
  4. f8                // [输入/输出] F8状态

//备注:由于采用的是流密码的工作方式,所以加密流程和解密流程一样,

//       关键流程在密钥流的生成

──────────────────────────────────────

──────────────────────────────────────

int f8_getiv(unsigned char *IV, unsigned long *len, symmetric_F8 *f8)

// [功能]   获取IV

  1. IV                // [输出] 初始化向量
  2. len               // [输出] IV长度
  3. f8                // [输入/输出] F8状态

//备注:-

──────────────────────────────────────

──────────────────────────────────────

int f8_setiv(const unsigned char *IV, unsigned long len, symmetric_F8 *f8)

// [功能]   设置IV值

// [返回]   0 [正常] or other [出错]

  1. IV                // [输入] 初始化向量
  2. len               // [输入] IV长度
  3. f8                // [输入/输出] F8状态

//备注:主要用在仅改变IV值,而key不变的情况下

──────────────────────────────────────

──────────────────────────────────────

int f8_done(symmetric_F8 *f8)

// [功能]   完成F8

  1. f8                // [输入/输出] f8的状态

//备注:调用算法的done(), 但AES中done()未作任何事情

//建议最好是销毁密钥相关敏感信息

──────────────────────────────────────

──────────────────────────────────────

int f8_test(void);

// [功能]   测试函数

──────────────────────────────────────

这篇关于密码库LibTomCrypt学习记录——(2.21)分组密码算法的工作模式——F8加密模式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743875

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)