加权轮询算法(wrr),这个考点,概率有一点点高哦

2024-02-24 23:18

本文主要是介绍加权轮询算法(wrr),这个考点,概率有一点点高哦,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

临近年关,招聘的和找工作的却忙的热火朝天,互相拿捏着。

今朝不同往昔,卖惨成为主流旋律,也加剧了从业人员的焦虑。很多人,工作了十来年没碰过算法,如今却不得不像蹲自习室一样,捧起大头书死命去看。

呜呼哀哉。

最近和不少参加面试的小伙伴交流了一下,发现出现了一个比较高频的算法题。不同于链表、树、动态规划这些有规律可循的算法题,加权轮询算法有很多小的技巧,在实际应用中也比较多。最平滑的Nginx轮询算法,如果你没有见过的话,那自然是永远无法写出来的。

所谓的加权轮询算法,其实就是Weighted Round Robin,简称wrr。在我们配置Nginx的upstream的时候,带权重的轮询,其实就是wrr。

upstream backend {ip_hash;server 192.168.1.232 weight=4; server 192.168.1.233 weight=3;server 192.168.1.234 weight=1;
}
复制代码

1. 核心数据结构

为了方便编码,对于每一个被调度的单元来说,我们抽象出一个叫做Element的类。其中,peer指的是具体的被调度资源,比如IP地址,而weight指的是这个资源的相关权重。

public class Element {protected String peer;protected int weight;public Element(String peer, int weight){this.peer = peer;this.weight = weight;}
}
复制代码

那么我们具体的调度接口,将直接返回peer的地址。

public interface IWrr {String next();
}
复制代码

我们将在代码中直接测试IWrr接口的调度情况。比如,分配7、2、1权重的三个资源,其测试代码如下。

Element[] elements = new Element[]{new Element("A", 7),new Element("B", 2),new Element("C", 1),
};
int count = 10;
IWrr wrr = new WrrSecurityLoopTreeMap(elements);
for (int i = 0; i < count; i++) {System.out.print(wrr.next() + ",");
}
System.out.println();
复制代码

上面的代码调用了10次接口,我们希望代码实现,将以7,2,1的比例进行调度。

2. 随机数版本

这篇关于加权轮询算法(wrr),这个考点,概率有一点点高哦的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743685

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int