【人工智能项目】LBP+SVM人脸表情识别

2024-02-24 22:59

本文主要是介绍【人工智能项目】LBP+SVM人脸表情识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【人工智能项目】人脸表情识别

在这里插入图片描述
本次将采用传统的机器方法对人脸表情进行识别,主要步骤为先提取人脸表情的特征,拼接特征,送入机器学习模型当中训练测试,得到最终的检测结果。那开搞!!!
在这里插入图片描述

生成本次所需的图片

本次所用的数据是fer2013.csv数据,图片以像素值的形式保存在了csv文件中,所以我们需要先生成图片。

import pandas as pddf = pd.read_csv("./fer2013.csv")
df.head()
#encoding:utf-8
import pandas as pd
import numpy as np
import os
import cv2emotions = {"0":"anger","1":"disgust","2":"fear","3":"happy","4":"sad","5":"surprised","6":"normal"
}def createDir(dir):if os.path.exists(dir) is False:os.makedirs(dir)def saveImageFromFer2013(file):# 读取csv文件faces_data = pd.read_csv(file)imageCount = 0# 遍历csv文件内容,并将图片数据按分类保存for index in range(len(faces_data)):# 解析每一行csv文件内容emotion_data = faces_data.loc[index][0]image_data = faces_data.loc[index][1]usage_data = faces_data.loc[index][2]# 将图片数据转换为48*48data_array = list(map(float,image_data.split()))data_array = np.asarray(data_array)image = data_array.reshape(48,48)# 选择分类,并创建文件名dirName = usage_dataemotionName = emotions[str(emotion_data)]# 图片要保存的文件夹imagePath = os.path.join(dirName,emotionName)# 创建分类文件夹以及表情文件夹createDir(dirName)createDir(imagePath)# 图片文件名imageName = os.path.join(imagePath,str(index)+".jpg")# 保存图片cv2.imwrite(imageName,image)imageCount = indexprint("总共有"+str(imageCount)+"张图片")if __name__ == "__main__":saveImageFromFer2013("fer2013.csv")

总共有35886张图片

对生成的图片进行可视化展示分析。

# 可视化图像 anger disgust fear happy normal sad surprised
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import matplotlib.pyplot as plt
import os
import warnings%matplotlib inline# 图像像素大小为48*48
pic_size = 48
plt.figure(0,figsize=(12,20))
cpt = 0
for expression in os.listdir("./Training/"):for i in range(1,6):cpt = cpt +1plt.subplot(7,5,cpt)img = load_img("./Training/"+expression+"/"+os.listdir("./Training/"+expression)[i],target_size=(pic_size,pic_size))plt.imshow(img,cmap="gray")
plt.tight_layout()
plt.show()        

在这里插入图片描述
之后对训练图像中类别数量进行统计

# 统计训练图像中每个类别的数量
for expression in os.listdir("./Training/"):print(str(len(os.listdir("./Training/"+expression)))+" " + expression +" images")

95 anger images
436 disgust images
4097 fear images
7215 happy images
4965 normal images
4830 sad images
3171 surprised images

特征提取工作

import os
import numpy as np
from skimage import feature as skif
from skimage import io, transform
import random
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVR
<img src="./2.png">
def get_lbp_data(images_data, hist_size=256, lbp_radius=1, lbp_point=8):n_images = images_data.shape[0]hist = np.zeros((n_images, hist_size))for i in np.arange(n_images):# 使用LBP方法提取图像的纹理特征.lbp = skif.local_binary_pattern(images_data[i], lbp_point, lbp_radius, 'default')# 统计图像的直方图max_bins = int(lbp.max() + 1)# hist size:256hist[i], _ = np.histogram(lbp, normed=True, bins=max_bins, range=(0, max_bins))return hist
import os
import cv2anger_imgs_path = "./Training/anger/"
anger_hists = []
for img_path in os.listdir(anger_imgs_path):img = cv2.imread(os.path.join(anger_imgs_path,img_path))hist =  get_lbp_data(img, hist_size=256, lbp_radius=1, lbp_point=8)anger_hists.append(hist)
anger_hists = np.array(anger_hists)
print(anger_hists.shape)
import numpy as np
anger_arr = np.zeros(3995)
anger_arr.shape

同理,对其余文件夹中的图片进行相同操作,生成各个表情的特征之后,对其拼接。

x_train = np.vstack((anger_hists,disgust_hists,fear_hists,happy_hists,normal_hists,sad_hists,surprised_hists))y_train = []anger_list = list(anger_arr)
disgust_list = list(disgust_arr)
fear_list = list(fear_arr)
happy_list = list(happy_arr)
normal_list = list(normal_arr)
sad_list = list(sad_arr)
surprised_list = list(surprised_arr)anger_list.extend(disgust_list)
anger_list.extend(fear_list)
anger_list.extend(happy_list)
anger_list.extend(normal_list)
anger_list.extend(sad_list)
anger_list.extend(surprised_list)y_train = np.array(anger_list)
x_train.shape
y_train.shape

重新划分

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(X,y,test_size=0.1,random_state=2019)

SVM模型

from sklearn.svm import SVCsvm = SVC(kernel="linear")
svm.fit(x_train,y_train)

SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape=‘ovr’, degree=3, gamma=‘scale’, kernel=‘linear’,
max_iter=-1, probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False)

from sklearn.externals import joblib
svm = joblib.load("svm_train_model.m")
print ("Done\n")
from sklearn.metrics import accuracy_score,f1_score,confusion_matrix,classification_reportfrom sklearn.externals import joblib
joblib.dump(svm, "svm_train_model.m")
print ("Done\n")
prediction =svm.predict(x_test)
score=accuracy_score(y_test,prediction)
import seaborn as snsgarbage_types = ['anger','disgust','fear','happy','normal','sad','surprised']
labels = {0:'anger',1:'disgust',2:'fear',3:'fear',4:'normal',5:'sad',6:'surprised'}acc = accuracy_score(y_test,prediction)
print(acc)
con_matrix = confusion_matrix(y_test, prediction,labels=[0, 1, 2, 3, 4, 5, 6])
plt.figure(figsize=(10, 10))
plt.title('Prediction of garbage types')
plt.ylabel('True label')
plt.xlabel('Predicted label')
# plt.show(sns.heatmap(con_matrix, annot=True, fmt="d",annot_kws={"size": 7},cmap='Blues',square=True))
ax = sns.heatmap(con_matrix, annot=True, fmt="d", annot_kws={"size": 7}, cmap='Blues', square=True)
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + 0.5, top - 0.5)
plt.show()

小节

LBP+SVM人脸识别的准确率相比较深度学习比较一般,不过主要是让大家了解如何提取特征,送入机器学习模型当中。那么本次就到这里了,下次见!

在这里插入图片描述

这篇关于【人工智能项目】LBP+SVM人脸表情识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743639

相关文章

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

springboot项目如何开启https服务

《springboot项目如何开启https服务》:本文主要介绍springboot项目如何开启https服务方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录springboot项目开启https服务1. 生成SSL证书密钥库使用keytool生成自签名证书将

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

将Java项目提交到云服务器的流程步骤

《将Java项目提交到云服务器的流程步骤》所谓将项目提交到云服务器即将你的项目打成一个jar包然后提交到云服务器即可,因此我们需要准备服务器环境为:Linux+JDK+MariDB(MySQL)+Gi... 目录1. 安装 jdk1.1 查看 jdk 版本1.2 下载 jdk2. 安装 mariadb(my

Node.js 数据库 CRUD 项目示例详解(完美解决方案)

《Node.js数据库CRUD项目示例详解(完美解决方案)》:本文主要介绍Node.js数据库CRUD项目示例详解(完美解决方案),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考... 目录项目结构1. 初始化项目2. 配置数据库连接 (config/db.js)3. 创建模型 (models/

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

Spring Boot项目中结合MyBatis实现MySQL的自动主从切换功能

《SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能》:本文主要介绍SpringBoot项目中结合MyBatis实现MySQL的自动主从切换功能,本文分步骤给大家介绍的... 目录原理解析1. mysql主从复制(Master-Slave Replication)2. 读写分离3.

一文教你如何将maven项目转成web项目

《一文教你如何将maven项目转成web项目》在软件开发过程中,有时我们需要将一个普通的Maven项目转换为Web项目,以便能够部署到Web容器中运行,本文将详细介绍如何通过简单的步骤完成这一转换过程... 目录准备工作步骤一:修改​​pom.XML​​1.1 添加​​packaging​​标签1.2 添加

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的