探索无限维度的奥秘:Hilbert空间

2024-02-24 21:20

本文主要是介绍探索无限维度的奥秘:Hilbert空间,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当我们提到空间,你可能会立即想到周遭的环境——三维世界,其中事物可以向上或向下、左或右、前或后移动。然而,在数学和物理学的世界里,有一种抽象的空间概念,它不仅覆盖了我们的三维空间,还包括了更复杂的无限维度世界。这个概念就是Hilbert空间。

什么是Hilbert空间?

Hilbert空间得名于德国数学家David Hilbert,它是一个完备的内积空间。这句话含有三个关键词:完备、内积和空间。

  • 空间:这里的空间不是我们日常生活的物理空间,而是一个数学概念,指的是一组元素的集合,这些元素可以以数学上的方式互动——可以相加,也可以乘以数值(标量)。

  • 内积:内积是一个函数,它能够接受空间中的两个元素并返回一个数值,以表示这两个元素之间的某种“相似性”,例如在二维或三维空间中,内积就可以表示为点乘。

  • 完备:如果一个空间是完备的,那么在这个空间里的任何序列,只要它们按照一定规则收敛到某个点,这个点仍旧在这个空间里,换句话说,序列的极限点不会“跑出去”。

Hilbert空间的重要特性

  • 线性:在Hilbert空间中,如果你将两个元素相加,或者将一个元素乘以数值,结果仍然在这个空间里。

  • 内积:如前所述,内积可以用来定义元素之间的角度和长度(诸如正交性和规范)。

  • 完备性:所有序列若收敛,则收敛点在空间内。

  • 无限维度:Hilbert空间可以有无限多的维度,这使得它能够描述如量子力学这类复杂的科学。

  • 正交基:Hilbert空间拥有一组基,构成空间的“坐标系”,而且这些基是正交的,意味着基与基之间互相之间的内积是0。

数值演示示例

让我们想象一个简单的Hilbert空间——实数平面上的所有长度为1的向量组成的空间。这些向量的一个例子是 (1/√2, 1/√2) 和 (-1/√2, 1/√2)。这个例子中的内积可以定义为两个向量的点乘,例如:

v1 = (1/√2, 1/√2)
v2 = (-1/√2, 1/√2)内积 = v1[0]*v2[0] + v1[1]*v2[1]
内积 = (1/√2)*(-1/√2) + (1/√2)*(1/√2)
内积 = -1/2 + 1/2
内积 = 0

这两个向量的内积是0,意味着它们在这个空间中正交。

使用Python实现的示例

在Python中,我们可以使用numpy库来演示Hilbert空间中的向量的操作。这里我们实现一个简单的二维Hilbert空间,其中内积就是向量的点乘。

import numpy as np# 定义两个向量
v1 = np.array([1/np.sqrt(2), 1/np.sqrt(2)])
v2 = np.array([-1/np.sqrt(2), 1/np.sqrt(2)])
v1.getLength = lambda: np.sqrt(np.dot(v1, v1))
v2.getLength = lambda: np.sqrt(np.dot(v2, v2))# 计算内积
inner_product = np.dot(v1, v2)# 打印结果
print("内积:", inner_product)
print("v1的长度:", v1.getLength())
print("v2的长度:", v2.getLength())

运行上述代码段,将会得到两个向量(在我们这个Hilbert空间中的元素)的内积是0,并且每个向量的长度是1。

在现实世界中,特别是在量子力学和信号处理等领域,Hilbert空间用于描述复杂的系统,它们通常远远超出我们的可视化能力。但是,即使是这样,了解这些无限维空间的基本原理对于深入理解现代科学领域的多个方面仍然非常重要。

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

下面两本书欢迎大家参考学习。

OpenCV轻松入门

李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。

在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。

本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
在这里插入图片描述

计算机视觉40例

李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。

在这里插入图片描述

这篇关于探索无限维度的奥秘:Hilbert空间的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/743409

相关文章

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

轻松录制每一刻:探索2024年免费高清录屏应用

你不会还在用一些社交工具来录屏吧?现在的市面上有不少免费录屏的软件了。别看如软件是免费的,它的功能比起社交工具的录屏功能来说全面的多。这次我就分享几款我用过的录屏工具。 1.福晰录屏大师 链接直达:https://www.foxitsoftware.cn/REC/  这个软件的操作方式非常简单,打开软件之后从界面设计就能看出来这个软件操作的便捷性。界面的设计简单明了基本一打眼你就会轻松驾驭啦

深入探索嵌入式 Linux

摘要:本文深入探究嵌入式 Linux。首先回顾其发展历程,从早期尝试到克服诸多困难逐渐成熟。接着阐述其体系结构,涵盖硬件、内核、文件系统和应用层。开发环境方面包括交叉编译工具链、调试工具和集成开发环境。在应用领域,广泛应用于消费电子、工业控制、汽车电子和智能家居等领域。关键技术有内核裁剪与优化、设备驱动程序开发、实时性增强和电源管理等。最后展望其未来发展趋势,如与物联网融合、人工智能应用、安全性与

【高等代数笔记】线性空间(一到四)

3. 线性空间 令 K n : = { ( a 1 , a 2 , . . . , a n ) ∣ a i ∈ K , i = 1 , 2 , . . . , n } \textbf{K}^{n}:=\{(a_{1},a_{2},...,a_{n})|a_{i}\in\textbf{K},i=1,2,...,n\} Kn:={(a1​,a2​,...,an​)∣ai​∈K,i=1,2,...,n

【vue3|第28期】 Vue3 + Vue Router:探索路由重定向的使用与作用

日期:2024年9月8日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉在这里插入代码片得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方,还望各位大佬不吝赐教,谢谢^ - ^ 1.01365 = 37.7834;0.99365 = 0.0255 1.02365 = 1377.4083;0.98365 = 0.0006 说

多云架构下大模型训练的存储稳定性探索

一、多云架构与大模型训练的融合 (一)多云架构的优势与挑战 多云架构为大模型训练带来了诸多优势。首先,资源灵活性显著提高,不同的云平台可以提供不同类型的计算资源和存储服务,满足大模型训练在不同阶段的需求。例如,某些云平台可能在 GPU 计算资源上具有优势,而另一些则在存储成本或性能上表现出色,企业可以根据实际情况进行选择和组合。其次,扩展性得以增强,当大模型的规模不断扩大时,单一云平

win7系统中C盘空间缩水的有效处理方法

一、深度剖析和完美解决   1、 休眠文件 hiberfil.sys :   该文件在C盘根目录为隐藏的系统文件,隐藏的这个hiberfil.sys文件大小正好和自己的物理内存是一致的,当你让电脑进入休眠状态时,Windows 7在关闭系统前将所有的内存内容写入Hiberfil.sys文件。   而后,当你重新打开电脑,操作系统使用Hiberfil.sys把所有信息放回内存,电脑

求空间直线与平面的交点

若直线不与平面平行,将存在交点。如下图所示,已知直线L过点m(m1,m2,m3),且方向向量为VL(v1,v2,v3),平面P过点n(n1,n2,n3),且法线方向向量为VP(vp1,vp2,vp3),求得直线与平面的交点O的坐标(x,y,z): 将直线方程写成参数方程形式,即有: x = m1+ v1 * t y = m2+ v2 * t

颠覆你的开发模式:敏捷思维带来的无限可能

敏捷软件开发作为现代软件工程的重要方法论,强调快速响应变化和持续交付价值。通过灵活的开发模式和高效的团队协作,敏捷方法在应对动态变化和不确定性方面表现出色。本文将结合学习和分析,探讨系统变化对敏捷开发的影响、业务与技术的对齐以及敏捷方法如何在产品开发过程中处理持续变化和迭代。 系统变化对敏捷软件开发的影响 在敏捷软件开发中,系统变化的管理至关重要。系统变化可以是需求的改变、技术的升级、