基于未来搜索算法的函数寻优算法

2024-02-24 08:50

本文主要是介绍基于未来搜索算法的函数寻优算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、理论基础
    • 1、未来搜索算法
      • (1)算法初始化
      • (2)局部解和全局最优解
      • (3)定义新解
      • (4)更新随机初始值
    • 2、FSA算法流程图
  • 二、仿真实验与结果分析
  • 三、参考文献

一、理论基础

1、未来搜索算法

未来搜索算法(Future search algorithm, FSA) 是M. Elsisi于2018年通过模仿人类向往美好生活而提出的一种新的搜索算法,该算法通过建立数学模型模拟人与人之间最优生活(局部搜索)和历史最优生活(全局搜索)来获得最优解。与其他算法相比,FSA具有调节参数少、收敛速度快、寻优能力强等优点。

(1)算法初始化

FSA通过式(1)初始化当前解: S ( i , : ) = Lb + ( Ub − Lb ) . ∗ r a n d ( 1 , d ) (1) S(i, :)=\text{Lb}+(\text{Ub}-\text{Lb}).*rand(1,d)\tag{1} S(i,:)=Lb+(UbLb).rand(1,d)(1)其中, S ( i , : ) S(i,:) S(i,:)表示第 i i i个国家/地区的当前解; Ub \text{Ub} Ub Lb \text{Lb} Lb分别表示搜索空间的上限和下限; r a n d rand rand表示 [ 0 , 1 ] [0,1] [0,1]区间均匀分布随机数; d d d表示问题维数。

(2)局部解和全局最优解

FSA将每个国家/地区当前最优解定义为局部最优解 LS \text{LS} LS,将所有国家/地区当前最优解定义为全局最优解 GS \text{GS} GS,并通过迭代过程获得待优化问题最优解。FSA通过式(2)和(3)实现局部解和全局最优解的更新: S ( i , : ) L = ( LS ( i , : ) − S ( i , : ) ) ∗ r a n d (2) S(i, :)_L=(\text{LS}(i, :)-S(i,:))*rand\tag{2} S(i,:)L=(LS(i,:)S(i,:))rand(2) S ( i , : ) G = ( GS − S ( i , : ) ) ∗ r a n d (3) S(i, :)_G=(\text{GS}-S(i,:))*rand\tag{3} S(i,:)G=(GSS(i,:))rand(3)其中, S ( i , : ) L S(i, :)_L S(i,:)L S ( i , : ) G S(i, :)_G S(i,:)G分别表示第 i i i个国家/地区的局部解和全局最优解; LS ( i , : ) \text{LS}(i, :) LS(i,:)表示第 i i i个国家/地区的局部最优解; GS \text{GS} GS表示所有国家/地区的全局最优解; r a n d rand rand表示 [ 0 , 1 ] [0,1] [0,1]范围内随机数。

(3)定义新解

在获得第 i i i个国家/地区局部解和全局最优解后,利用式(4)重新定义当前解: S ( i , : ) = S ( i , : ) + S ( i , : ) L + S ( i , : ) G (4) S(i, :)=S(i, :)+S(i, :)_L+S(i, :)_G\tag{4} S(i,:)=S(i,:)+S(i,:)L+S(i,:)G(4)

(4)更新随机初始值

FSA在更新局部最优解 LS \text{LS} LS和全局最优解 GS \text{GS} GS后,利用式(5)更新式(1)的随机初始值: S ( i , : ) = GS + ( GS − LS ( i , : ) ) ∗ r a n d (5) S(i, :)=\text{GS}+(\text{GS}-\text{LS}(i, :))*rand\tag{5} S(i,:)=GS+(GSLS(i,:))rand(5)

2、FSA算法流程图

FSA算法流程图如图1所示。
在这里插入图片描述

图1 FSA算法流程图

二、仿真实验与结果分析

将FSA与PSO和GSA进行对比,以文献[1]中表1、表2和表3的F1、F2(单峰函数/30维)、F9、F10(多峰函数/30维)、F14、F15(固定维度多峰函数/2维、4维)为例,实验设置种群规模为30,最大迭代次数为1000,结果显示如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

函数:F1
FSA:最优值:0
PSO:最优值:182.2818
GSA:最优值:8.6339e-17
函数:F2
FSA:最优值:0
PSO:最优值:19.0327
GSA:最优值:4.5383e-08
函数:F9
FSA:最优值:0
PSO:最优值:79.9366
GSA:最优值:22.884
函数:F10
FSA:最优值:8.8818e-16
PSO:最优值:6.5874
GSA:最优值:5.8252e-09
函数:F14
FSA:最优值:1.992
PSO:最优值:11.7187
GSA:最优值:2.2116
函数:F15
FSA:最优值:0.00031431
PSO:最优值:0.00030749
GSA:最优值:0.0038895

实验结果表明:FSA算法具有更优的性能。

三、参考文献

[1] M. Elsisi. Future search algorithm for optimization[J]. Evolutionary Intelligence, 2019, 12: 21-31.
[2] 郭存文, 崔东文. PCA-FSA-MLR模型及在径流预测中的应用研究[J]. 人民珠江, 2021, 42(6): 91-98.

这篇关于基于未来搜索算法的函数寻优算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/741596

相关文章

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.