1.4.2 逆透视变换IPM

2024-02-24 04:20
文章标签 1.4 透视 变换 ipm

本文主要是介绍1.4.2 逆透视变换IPM,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

逆透视变换IPM

更多内容,请关注:
github:https://github.com/gotonote/Autopilot-Notes.git

在自动/辅助驾驶中,车道线的检测非常重要。在前视摄像头拍摄的图像中,由于透视效应的存在,本来平行的事物,在图像中确实相交的。而IPM变换就是消除这种透视效应,所以也叫逆透视。

一、IPM变换方法

(一)对应点对单应变换方法

  • 输入:至少四个对应点对,不能有三点及以上共线,不需要知道摄相机参数或者平面位置的任何信息。
  • 数学原理:利用点对,求解透视变换矩阵,其中map_matrix是一个3×3矩阵,所以可以构建一个线性方程组进行求解。如果大于4个点,可采用 r a n s a c ransac ransac 的方法进行求解,一边具有更好的稳定性。
  • 选点方法:一般采取手动选取,或者利用消影点(图像上平行线的交点,也叫消失点,vanish point)选取。

[ t i x i ′ t i y i ′ t i ] = m a p _ m a t r i x ⋅ [ x i y i 1 ] \begin{bmatrix} t_i x_i' \\ t_i y_i' \\ t_i \\ \end{bmatrix} = map\_matrix \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \\ \end{bmatrix} tixitiyiti =map_matrix xiyi1

d s t ( i ) = ( x i ′ , y i ′ ) s r c ( i ) = ( x i , y i ) i = 0 , 1 , 2 , 3 dst(i) = (x_i', y_i') \\ src(i) = (x_i, y_i) \\ i = 0, 1, 2, 3 dst(i)=(xi,yi)src(i)=(xi,yi)i=0,1,2,3

图1.对应点对单应变换方法

  • 代码实现:代码实现比较简单,可以很容易实现IPM变换
    • 计算变换矩阵: H = getPerspectiveTransform()
    • 获取IPM图像: warpPerspective();
void warpPerspective(Mat src, Mat &dst, Mat T){//此处注意计算模型的坐标系与Mat的不同//图像以左上点为(0,0),向左为x轴,向下为y轴,所以前期搜索到的特征点 存的格式是(图像x,图像y)---(rows,cols)//而Mat矩阵的是向下为x轴,向左为y轴,所以存的方向为(图像y,图像x)----(cols,rows)----(width,height)//创建原图的四个顶点的3*4矩阵(此处我的顺序为左上,右上,左下,右下)Mat tmp(3, 4, CV_64FC1, 1);tmp.at<double>(0, 0) = 0;tmp.at<double>(1, 0) = 0;tmp.at<double>(0, 1) = src.cols;tmp.at<double>(1, 1) = 0;tmp.at<double>(0, 2) = 0;tmp.at<double>(1, 2) = src.rows;tmp.at<double>(0, 3) = src.cols;tmp.at<double>(1, 3) = src.rows;//获得原图四个顶点变换后的坐标,计算变换后的图像尺寸Mat corner = T * tmp;  //corner=(x,y)=(cols,rows)int width = 0, height = 0;double maxw = corner.at<double>(0, 0) / corner.at<double>(2,0);double minw = corner.at<double>(0, 0) / corner.at<double>(2,0);double maxh = corner.at<double>(1, 0) / corner.at<double>(2,0);double minh = corner.at<double>(1, 0) / corner.at<double>(2,0);for (int i = 1; i < 4; i++) {maxw = max(maxw, corner.at<double>(0, i) / corner.at<double>(2, i));minw = min(minw, corner.at<double>(0, i) / corner.at<double>(2, i));maxh = max(maxh, corner.at<double>(1, i) / corner.at<double>(2, i));minh = min(minh, corner.at<double>(1, i) / corner.at<double>(2, i));}//创建向前映射矩阵 map_x, map_y//size(height,width)dst.create(int(maxh - minh), int(maxw - minw), src.type());Mat map_x(dst.size(), CV_32FC1);Mat map_y(dst.size(), CV_32FC1);Mat proj(3,1, CV_32FC1,1);Mat point(3,1, CV_32FC1,1);T.convertTo(T, CV_32FC1);  //本句是为了令T与point同类型【同类型才可以相乘,否则报错,也可以使用 T.convertTo(T, point.type());】Mat Tinv=T.inv();for (int i = 0; i < dst.rows; i++) {        for (int j = 0; j < dst.cols; j++) {point.at<float>(0) = j + minw;point.at<float>(1) = i + minh;proj = Tinv * point;map_x.at<float>(i, j) = proj.at<float>(0) / proj.at<float>(2);map_y.at<float>(i, j) = proj.at<float>(1) / proj.at<float>(2);}}remap(src, dst, map_x, map_y, CV_INTER_LINEAR);
}

(二)简化相机模型的逆透视变换

利用相机成像过程当中各种坐标系之间的转换关系,对其基本原理进行抽象和简化,从而得到世界坐标系和图像坐标系之间坐标的对应关系,并对逆透视变换的坐标关系进行公式化描述。这种逆透视变换形式简单,计算速度快,并且适用于复杂道路场景。

1. Paper:Stereo inverse perspective mapping: theory and applications 文章地址
图2.对应关系

{ u ( x , y , 0 ) = arctan ⁡ { h sin ⁡ [ arctan ⁡ ( y − d x − l ) ] y − d } − ( θ ~ − α ) 2 α m − 1 v ( x , y , 0 ) = arctan ⁡ [ y − d x − l ] − ( γ ~ − α ) 2 α n − 1 (World to Image) \left\{ \begin{aligned} u(x,y,0)&=\frac{\arctan{\Bigg\lbrace\frac{h\sin\big[\arctan\big(\frac{y-d}{x-l}\big)\big]}{y-d}\Bigg\rbrace}-(\tilde{\theta}-\alpha)}{\frac{2\alpha}{m-1}}\\ v(x,y,0)&=\frac{\arctan\big[\frac{y-d}{x-l}\big]-(\tilde{\gamma}-\alpha)}{\frac{2\alpha}{n-1}}\\ \end{aligned} \right. \tag{World to Image} u(x,y,0)v(x,y,0)=m12αarctan{ydhsin[arctan(xlyd)]}(θ~α)=n12αarctan[xlyd](γ~α)(World to Image)

{ x ( u , v ) = h × cot ⁡ [ ( θ ~ − α ) + u 2 α m − 1 ] × cos ⁡ [ ( γ ~ − α ) + v 2 α n − 1 ] + l y ( u , v ) = h × cot ⁡ [ ( θ ~ − α ) + u 2 α m − 1 ] × sin ⁡ [ ( γ ~ − α ) + v 2 α n − 1 ] + d z ( u , v ) = 0 (Image to World) \left\{ \begin{aligned} x(u,v)&=h\times\cot \left[(\tilde{\theta}-\alpha)+u\frac{2\alpha}{m-1}\right]\\ &\times\cos\left[(\tilde{\gamma}-\alpha)+v\frac{2\alpha}{n-1} \right]+l\\ y(u,v)&=h\times\cot\left[(\tilde{\theta}-\alpha)+u\frac{2\alpha}{m-1}\right]\\ &\times\sin\left[(\tilde{\gamma}-\alpha)+v\frac{2\alpha}{n-1} \right]+d\\ z(u,v)&=0 \end{aligned} \right. \tag{Image to World} x(u,v)y(u,v)z(u,v)=h×cot[(θ~α)+um12α]×cos[(γ~α)+vn12α]+l=h×cot[(θ~α)+um12α]×sin[(γ~α)+vn12α]+d=0(Image to World)

其中:

α : 相机一半视场角 ( l , d , h ) : 相机在世界坐标系下的位置 γ ~ 、 θ ~ :航向角和俯仰角 m 、 n : 图像高、宽 \begin{aligned} & \alpha:相机一半视场角 \\ & (l,d,h): 相机在世界坐标系下的位置 \\ & \tilde{\gamma} 、\tilde{\theta}:航向角和俯仰角 \\ & m、n: 图像高、宽 \\ \end{aligned} α:相机一半视场角(l,d,h):相机在世界坐标系下的位置γ~θ~:航向角和俯仰角mn:图像高、宽

此方法同时考虑到了上下俯仰角和水平偏航角度的矫正,但是存在水平线弯曲误差,导致图像的水平横线如行道线等,恢复到世界坐标系的道路平面后,会有一定的弯曲。
图3.处理过程

图4.处理效果

2. Paper:Robust Inverse Perspective Mapping Based on Vanishing Point 论文地址

(1) 基于消失点的俯仰角和偏航角计算

根据射影几何学原理,现实空间中的平行直线组在存在透视形变的情况下将会相交于无穷远点处,而该交点在成像平面上的投影即被称为消失点。当现实世界的平行直线组与成像平面平行时,消失点将位于成像平面的无穷远处;但是当平行直线组与成像平面部存在不平行关系时,消失点将位于成像平面的有限远处,甚至可能出现在图像区域以内。

(2) 消失点具有一些重要的性质:

  • 真实道路场景中相互平行的车道线以及与其他和车道线平行的直线都指向相同的消失点;
  • 某条直线对应的消失点一定位于这条直线在图像平面的投影射线方向上;
  • 消失点的位置和滚转角无关,仅仅和俯仰角、偏航角有关;
  • 当偏转角为90度时,车道线所对应的消失点位于道路图像水平方向外部;
  • 当俯仰角为90度时,车道线所对应的消失点位于道路图像垂直方向外部;
  • 当相机坐标系和世界坐标系原点完全重合时,消失点位于道路图像中心;
    图5.对应关系

其中:

( X p o s , Y p o s ) : 消失点坐标 ( X , Y , Z = 0 ) : 世界坐标系下的地平面 ( U , V ) : 图像坐标系 ( M , N ) : 图像宽高 X 0 ( r , c ) , Y 0 ( r , c ) : 图像坐标系到世界坐标系映射 C = ( C x , C y , C z ) : 世界坐标系下的相机位置 C x = C y = 0 , C z : 相机高度 ( A l p h a V , A l p h a U ) : 垂直、水平视场角的一半 A l p h a U = arctan ⁡ ( W 2 × F ) A l p h a V = arctan ⁡ ( H ^ 2 × F ) X ( r , c ) , Y ( r , c ) : 含 γ 角度补偿的图像坐标系到世界坐标系映射 \begin{aligned} & (X_{pos}, Y_{pos}): 消失点坐标 \\ & (X,Y,Z=0): 世界坐标系下的地平面 \\ & (U,V): 图像坐标系\\ & (M, N): 图像宽高 \\ & X_{0}(r,c), Y_{0}(r,c): 图像坐标系到世界坐标系映射\\ & C=(C_{x},C_{y},C_{z}): 世界坐标系下的相机位置\\ & C_{x}=C_{y}=0, C_{z}: 相机高度\\ & (AlphaV, AlphaU): 垂直、水平视场角的一半 \\ & AlphaU=\arctan(\frac{W}{2\times F})\\ & AlphaV=\arctan(\frac{\hat{H}}{2\times F})\\ & X(r,c),Y(r,c): 含\gamma角度补偿的图像坐标系到世界坐标系映射 \\ \end{aligned} (Xpos,Ypos):消失点坐标(X,Y,Z=0):世界坐标系下的地平面(U,V):图像坐标系(M,N):图像宽高X0(r,c),Y0(r,c):图像坐标系到世界坐标系映射C=(Cx,Cy,Cz):世界坐标系下的相机位置Cx=Cy=0,Cz:相机高度(AlphaV,AlphaU):垂直、水平视场角的一半AlphaU=arctan(2×FW)AlphaV=arctan(2×FH^)X(r,c),Y(r,c):γ角度补偿的图像坐标系到世界坐标系映射

由此可计算偏转和俯仰角:

{ θ = arctan ⁡ ( tan ⁡ ( A l p h a V ) × ( 1 − 2 Y p o s N ) ) γ = arctan ⁡ ( tan ⁡ ( A l p h a U ) × ( 2 X p o s M − 1 ) ) \left\{ \begin{aligned} \theta&=\arctan(\tan(AlphaV)\times(1-\frac{2Y_{pos}}{N}))\\ \gamma&=\arctan(\tan(AlphaU)\times(\frac{2X_{pos}}{M}-1))\\ \end{aligned} \right. θγ=arctan(tan(AlphaV)×(1N2Ypos))=arctan(tan(AlphaU)×(M2Xpos1))

{ r F a c t o r = ( 1 − 2 U M ⊤ 1 ) × tan ⁡ ( A l p h a V ) c F a c t o r = ( 1 − 2 V N − 1 ) × tan ⁡ ( A l p h a U ) \left\{ \begin{aligned} rFactor&=(1-\frac{2U}{M_{\top}1})\times\tan(AlphaV)\\ cFactor&=(1-\frac{2V}{N-1})\times\tan(AlphaU)\\ \end{aligned} \right. rFactorcFactor=(1M12U)×tan(AlphaV)=(1N12V)×tan(AlphaU)

{ X 0 ( r , c ) = C z × 1 + r F a c t o r × tan ⁡ ( θ ) tan ⁡ ( θ ) − r F a c t o r + C x Y 0 ( r , c ) = C z × c F a c t o r × cos ⁡ ( θ ) tan ⁡ ( θ ) − r F a c t o r + C y \left\{ \begin{aligned} X_{0}(r,c)&=C_{z}\times\frac{1+rFactor\times\tan(\theta)}{\tan( \theta)-rFactor}+C_{x}\\ Y_{0}(r,c)&=C_{z}\times\frac{cFactor\times\cos(\theta)}{\tan(\theta)-rFactor}+C_{y}\\ \end{aligned} \right. X0(r,c)Y0(r,c)=Cz×tan(θ)rFactor1+rFactor×tan(θ)+Cx=Cz×tan(θ)rFactorcFactor×cos(θ)+Cy

引入偏航角:

{ X ( r , c ) = X 0 ( r , c ) × cos ⁡ ( γ ) + Y 0 ( r , c ) × sin ⁡ ( γ ) Y ( r , c ) = X 0 ( r , c ) × ( − sin ⁡ ( γ ) ) + Y 0 ( r , c ) × cos ⁡ ( γ ) \left\{ \begin{aligned} X(r,c)&=X_{0}(r,c)\times\cos(\gamma)+Y_{0}(r,c)\times \sin(\gamma)\\ Y(r,c)&=X_{0}(r,c)\times(-\sin(\gamma))+Y_{0}(r,c)\times\cos(\gamma)\\ \end{aligned} \right. {X(r,c)Y(r,c)=X0(r,c)×cos(γ)+Y0(r,c)×sin(γ)=X0(r,c)×(sin(γ))+Y0(r,c)×cos(γ)

  • 代码实现:
void build_ipm_table(const int srcw,const int srch,const int dstw,const int dsth,const int vptx,const int vpty,int* maptable,){const float alpha_h = 0.5f * FOV_H * DEG2RAD;const float alpha_v = 0.5f * FOV_V * DEG2RAD;const float gamma = -(float)(vptx - (srcw >> 1)) * alpha_h / (srcw >> 1); // camera pan angleconst float theta = -(float)(vpty - (srch >> 1)) * alpha_v / (srch >> 1); // camera tilt angleconst int front_map_start_position = dsth >> 1;const int front_map_end_position = front_map_start_position + dsth;const int side_map_mid_position = dstw >> 1;//scale to get better mapped imageconst int front_map_scale_factor = 4;const int side_map_scale_factor = 2;for (int y = 0; y < dstw; ++y){for (int x = front_map_start_position; x < front_map_end_position; ++x){int idx = y * dsth + (x - front_map_start_position);int deltax = front_map_scale_factor * (front_map_end_position - x - CAMERA_POS_X);int deltay = side_map_scale_factor * (y - side_map_mid_position - CAMERA_POS_Y);if (deltay == 0){maptable[idx] = maptable[idx - dsth];}else{int u = (int)((atan(CAMERA_POS_Z * sin(atan((float)deltay / deltax)) / deltay) - (theta - alpha_v)) / (2 * alpha_v / srch));int v = (int)((atan((float)deltay / deltax) - (gamma - alpha_h)) / (2 * alpha_h / srcw));if (u >= 0 && u < srch && v >= 0 && v < srcw){maptable[idx] = srcw * u + v;}else{maptable[idx] = -1;}}}}
}

从对比结果看,此方法不会让水平线弯曲,同事使用偏航角进行修正,具有较好效果。
图6.处理效果

3. Paper:Adaptive Inverse Perspective Mapping for Lane Map Generation with SLAM 论文地址

这种方法利用相机位姿,在相邻帧中加入了俯仰角的修正,因此可以得到比较好的逆变换效果,下面就是相关原理示意图:

(1)单帧的情形:
图7.对应关系

{ X ( v ) = h cot ⁡ ( θ 0 + θ ( v ) ) = h tan ⁡ ( θ 0 ) tan ⁡ ( θ ( v ) ) − 1 tan ⁡ ( θ 0 ) + tan ⁡ ( θ ( v ) ) = h tan ⁡ ( θ 0 ) ( 1 − 2 v − 1 m − 1 ) tan ⁡ ( α r ) − 1 tan ⁡ ( θ 0 ) + ( 1 − 2 v − 1 m − 1 ) tan ⁡ ( α r ) Y ( u , v ) = − 1 K ( u − n + 1 2 ) 2 K tan ⁡ ( α c ) n − 1 X ( v ) = ( 1 − 2 u − 1 n − 1 ) tan ⁡ ( α c ) X ( v ) \left\{ \begin{aligned} {\bf X}({\bf v}) &= {\bf h}\cot(\theta_{0}+\theta(v))\\ &={\bf h}\frac{\tan(\theta_{0})\tan(\theta({\bf v}))-{\bf 1}}{\tan( \theta_{0})+\tan(\theta({\bf v}))}\\ &={\bf h}\frac{\tan(\theta_{0})\Big({\bf 1}-2\frac{{\bf v}-{\bf 1 }}{{\bf m}-{\bf 1}}\Big)\tan(\alpha_{r})-{\bf 1}}{\tan(\theta_{0})+\Big({\bf 1}-2 \frac{{\bf v}-{\bf 1}}{{\bf m}-{\bf 1}}\Big)\tan(\alpha_{r})}\\ {\bf Y}({\bf u},{\bf v}) &= -\frac{1}{\bf K}\Big({\bf u}-\frac{{\bf n}+{\bf 1}}{{\bf 2}} \Big)\frac{2{\bf K}\tan(\alpha_{c})}{{\bf n}-{\bf 1}}{\bf X}({\bf v}) \\ &= \Big({\bf 1}-2\frac{{\bf u}-{\bf 1}}{{\bf n}-{\bf 1}}\Big)\tan( \alpha_{c}){\bf X}({\bf v}) \end{aligned} \right. X(v)Y(u,v)=hcot(θ0+θ(v))=htan(θ0)+tan(θ(v))tan(θ0)tan(θ(v))1=htan(θ0)+(12m1v1)tan(αr)tan(θ0)(12m1v1)tan(αr)1=K1(u2n+1)n12Ktan(αc)X(v)=(12n1u1)tan(αc)X(v)

(2) 考虑帧间自适应变换:
图8.对应关系

{ X ( v , θ p ) = h tan ⁡ ( θ 0 + θ p ) ( 1 − 2 v − 1 m − 1 ) tan ⁡ ( α r ) − 1 tan ⁡ ( θ 0 + θ p ) + ( 1 − 2 v − 1 m − 1 ) tan ⁡ ( α r ) Y ( u , v , θ p ) = ( 1 − 2 u − 1 n − 1 ) tan ⁡ ( α c ) X ( v , θ p ) \left\{ \begin{aligned} \mathbf{X}(\mathbf{v},\theta_{\mathbf{p}}) &= \mathbf{h}\frac{\tan(\theta_{0}+\theta_{p})\Big(\mathbf{1}-2 \frac{\mathbf{v}-1}{\mathbf{m}-1}\Big)\tan(\alpha_{r})-\mathbf{1}}{\tan( \theta_{0}+\theta_{p})+\Big(\mathbf{1}-2\frac{\mathbf{v}-1}{\mathbf{m}-1} \Big)\tan(\alpha_{r})}\\ \mathbf{Y}(\mathbf{u},\mathbf{v},\theta_{\mathbf{p}}) &= \Big(\mathbf{1}-2\frac{\mathbf{u}-\mathbf{1}}{\mathbf{n}- \mathbf{1}}\Big)\tan(\alpha_{c})\mathbf{X}(\mathbf{v},\theta_{\mathbf{p}}) \\ \end{aligned} \right. X(v,θp)Y(u,v,θp)=htan(θ0+θp)+(12m1v1)tan(αr)tan(θ0+θp)(12m1v1)tan(αr)1=(12n1u1)tan(αc)X(v,θp)

  • 代码实现:
void AdaptiveIPM::ipm_based_on_vp(){//根据灭点来进行反投影变换Point2d ptVP = m_ptVP;Mat imgSrc = m_SrcImg;int v = imgSrc.rows;int u = imgSrc.cols;ptVP.y = MAX(0, ptVP.y);m_ipmInfo.vpPortion = m_ipmInfo.vpInitPortion;FLOAT_MAT_ELEM_TYPE eps = m_ipmInfo.vpPortion * v;//cout<<eps<<endl;m_ipmInfo.ipmLeft = MAX(0, m_ipmInfo.ipmLeft);m_ipmInfo.ipmRight = MIN(u - 1, m_ipmInfo.ipmRight);m_ipmInfo.ipmTop = ptVP.y + eps;// MAX(ptVanish.y+eps, m_ipmInfo.ipmTop);//动态转化大小m_ipmInfo.ipmBottom = MIN(v - 1, m_ipmInfo.ipmBottom);FLOAT_MAT_ELEM_TYPE uvLimitsp[] = { ptVP.x,                m_ipmInfo.ipmRight,        m_ipmInfo.ipmLeft,        ptVP.x,m_ipmInfo.ipmTop,    m_ipmInfo.ipmTop,        m_ipmInfo.ipmTop,        m_ipmInfo.ipmBottom };CvMat uvLimits = cvMat(2, 4, FLOAT_MAT_TYPE, uvLimitsp);//get these points on the ground planeCvMat *xyLimitsp = cvCreateMat(2, 4, FLOAT_MAT_TYPE);CvMat xyLimits = *xyLimitsp;transformImage2Ground(&uvLimits, &xyLimits, m_cam);//get extent on the ground planeCvMat row1, row2;cvGetRow(&xyLimits, &row1, 0);cvGetRow(&xyLimits, &row2, 1);double xfMax, xfMin, yfMax, yfMin;cvMinMaxLoc(&row1, (double*)&xfMin, (double*)&xfMax, 0, 0, 0);cvMinMaxLoc(&row2, (double*)&yfMin, (double*)&yfMax, 0, 0, 0);int outRow = m_IpmImg.rows; //设定512*512int outCol = m_IpmImg.cols;//cout<<"x:"<<xfMax<<" "<<xfMin<<endl<<"y:"<<yfMax<<" "<<yfMin<<endl;FLOAT_MAT_ELEM_TYPE stepRow = (yfMax - yfMin) / outRow;FLOAT_MAT_ELEM_TYPE stepCol = (xfMax - xfMin) / outCol;CvMat *xyGrid = cvCreateMat(2, outRow*outCol, FLOAT_MAT_TYPE);INT i, j;FLOAT_MAT_ELEM_TYPE x, y;//fill it with x-y values on the ground plane in world framefor (i = 0, y = yfMax - .5*stepRow; i < outRow; i++, y -= stepRow){for (j = 0, x = xfMin + .5*stepCol; j < outCol; j++, x += stepCol){//cout<<"x:"<<x<<"y:"<<y<<endl;CV_MAT_ELEM(*xyGrid, FLOAT_MAT_ELEM_TYPE, 0, i*outCol + j) = x;CV_MAT_ELEM(*xyGrid, FLOAT_MAT_ELEM_TYPE, 1, i*outCol + j) = y;}}//get their pixel values in image frame //获取每个像素的真实像素值,创建输出2行,outRow*outCol大小的矩阵CvMat *uvGrid = cvCreateMat(2, outRow*outCol, FLOAT_MAT_TYPE);transformGround2Image(xyGrid, uvGrid, m_cam);//now loop and find the nearest pixel value for each position//that's inside the image, otherwise put it zeroFLOAT_MAT_ELEM_TYPE ui, vi;//get mean of the input image//cout<<m_srcImg.type()<<endl;CvMat *inImage = cvCreateMat(imgSrc.rows, imgSrc.cols, imgSrc.type());CvMat tempImg = imgSrc;cvCopy(&tempImg, inImage);CvScalar means = cvAvg(inImage);double mean = means.val[0];for (i = 0; i < outRow; i++){for (j = 0; j < outCol; j++){/*get pixel coordiantes*/ui = CV_MAT_ELEM(*uvGrid, FLOAT_MAT_ELEM_TYPE, 0, i*outCol + j);vi = CV_MAT_ELEM(*uvGrid, FLOAT_MAT_ELEM_TYPE, 1, i*outCol + j);if (ui<m_ipmInfo.ipmLeft || ui>m_ipmInfo.ipmRight || vi<m_ipmInfo.ipmTop || vi>m_ipmInfo.ipmBottom){m_IpmImg.at<uchar>(i, j) = 0;}/*not out of bounds, then get nearest neighbor*/else{/*Bilinear interpolation 双线性插值*/if (m_ipmInfo.ipmInterpolation == 0){int x1 = int(ui);int x2 = int(ui + 0.5);int y1 = int(vi);int y2 = int(vi + 0.5);float x = ui - x1;float y = vi - y1;float val = CV_MAT_ELEM(*inImage, uchar, y1, x1) * (1 - x) * (1 - y) + CV_MAT_ELEM(*inImage, uchar, y1, x2) * x * (1 - y) + CV_MAT_ELEM(*inImage, uchar, y2, x1) * (1 - x) * y + CV_MAT_ELEM(*inImage, uchar, y2, x2) * x * y;m_IpmImg.at<uchar>(i, j) = (float)val;}/*nearest-neighbor interpolation最近邻插值*/else{m_IpmImg.at<uchar>(i, j) = CV_MAT_ELEM(*inImage, uchar, int(vi + .5), int(ui + .5));}}}}m_ipmInfo.xLimits[0] = CV_MAT_ELEM(*xyGrid, FLOAT_MAT_ELEM_TYPE, 0, 0);m_ipmInfo.xLimits[1] = CV_MAT_ELEM(*xyGrid, FLOAT_MAT_ELEM_TYPE, 0, (outRow - 1)*outCol + outCol - 1);m_ipmInfo.yLimits[1] = CV_MAT_ELEM(*xyGrid, FLOAT_MAT_ELEM_TYPE, 1, 0);m_ipmInfo.yLimits[0] = CV_MAT_ELEM(*xyGrid, FLOAT_MAT_ELEM_TYPE, 1, (outRow - 1)*outCol + outCol - 1);m_ipmInfo.xScale = 1 / stepCol;m_ipmInfo.yScale = 1 / stepRow;m_ipmInfo._width = outCol;m_ipmInfo._height = outRow;cout << stepCol << endl;cout << stepRow << endl;//cleancvReleaseMat(&xyLimitsp);cvReleaseMat(&xyGrid);cvReleaseMat(&uvGrid);cvReleaseMat(&inImage);}

图9.处理效果

(三)其他IPM变换方法:

以下两点是实际工作上所使用过的一些方法,相比较于以上几种方法来说,更多的是应用了多视图几何的知识来得到IPM变换。

1. 在相机坐标系下已求得路平面方程求IPM

在slam应用中,如果已知相机pose,同时在用地面点已求得路平面方程的情况下,可利用多视图几何关系求得IPM变换

输入:

  • 相机坐标系下路平面方程 a x + b y + c z + d = 0 ax + by + cz + d = 0 ax+by+cz+d=0
  • 相机内参

步骤:

(1) 利用相机成像原理,由图像坐标求得一个射线 λ ( X , Y . Z ) T = K − 1 ∗ ( u , v , 1 ) T λ(X,Y.Z)^T = K^{-1}*(u,v,1)^T λ(X,Y.Z)T=K1(u,v,1)T

(2) 射线与平面相交即可求得此图像像素点的3维坐标;
利用插值算法,均可在路面的任意点得到像素值,那么就可得到IPM图像;

2. 已知相机位姿,利用求单应矩阵得到IPM

同样,在已知相机pose情况下,可将相机向路面方向旋转90度(俯仰角),那么得到一个新的相机pose,此时的相机是垂直与路面向下,那么得到的图像自然也就是IPM图像。

对于多视图几何中,单应矩阵的计算公式:

H = K ( R + T d − 1 N T ) K − 1 H=K(R+Td^{-1}N^T)K{^-1} \\ H=K(R+Td1NT)K1

N , d N,d N,d 表示路平面参数

如果是纯旋转矩阵,那么单应可以表示为:

H = K R K − 1 H=KRK{-1} \\ H=KRK1

当单应矩阵求出来了,那么很容易就可以得到IPM变换图像。

d s t ( x , y ) = s r c ( ( H 11 x + H 12 y + H 13 ) / ( H 31 x + H 32 y + H 33 ) , ( H 21 x + H 22 y + H 23 ) / ( H 31 x + H 32 y + H 33 ) ) dst(x,y) = src((H_{11}x+H_{12}y+H_{13})/(H_{31}x+H_{32}y+H_{33}), \quad(H_{21}x+H_{22}y+H_{23})/(H_{31}x+H_{32}y+H_{33}))\\ dst(x,y)=src((H11x+H12y+H13)/(H31x+H32y+H33),(H21x+H22y+H23)/(H31x+H32y+H33))
图10. 仿射和透视变换

  • 代码实现:
void basicPanoramaStitching(const string &img1Path, const string &img2Path){Mat img1 = imread("Blender_Suzanne1.jpg");Mat img2 = imread("Blender_Suzanne2.jpg");//! [camera-pose-from-Blender-at-location-1]Mat c1Mo = (Mat_<double>(4, 4) << 0.9659258723258972, 0.2588190734386444, 0.0, 1.5529145002365112,0.08852133899927139, -0.3303661346435547, -0.9396926164627075, -0.10281121730804443,-0.24321036040782928, 0.9076734185218811, -0.342020183801651, 6.130080699920654,0, 0, 0, 1);//! [camera-pose-from-Blender-at-location-1]//! [camera-pose-from-Blender-at-location-2]Mat c2Mo = (Mat_<double>(4, 4) << 0.9659258723258972, -0.2588190734386444, 0.0, -1.5529145002365112,-0.08852133899927139, -0.3303661346435547, -0.9396926164627075, -0.10281121730804443,0.24321036040782928, 0.9076734185218811, -0.342020183801651, 6.130080699920654,0, 0, 0, 1);//! [camera-pose-from-Blender-at-location-2]Mat cameraMatrix = (Mat_<double>(3, 3) << 700.0, 0.0, 320.0,0.0, 700.0, 240.0,0, 0, 1);Mat R1 = c1Mo(Range(0, 3), Range(0, 3));Mat R2 = c2Mo(Range(0, 3), Range(0, 3));//c1Mo * oMc2Mat R_2to1 = R1*R2.t();//! [compute-homography]Mat H = cameraMatrix * R_2to1 * cameraMatrix.inv();H /= H.at<double>(2, 2);cout << "H:\n" << H << endl;//! [compute-homography]//! [stitch]Mat img_stitch;warpPerspective(img2, img_stitch, H, Size(img2.cols * 2, img2.rows));Mat half = img_stitch(Rect(0, 0, img1.cols, img1.rows));img1.copyTo(half);//! [stitch]Mat img_compare;Mat img_space = Mat::zeros(Size(50, img1.rows), CV_8UC3);hconcat(img1, img_space, img_compare);hconcat(img_compare, img2, img_compare);imshow("Compare images", img_compare);imshow("Panorama stitching", img_stitch);waitKey();}

这篇关于1.4.2 逆透视变换IPM的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740930

相关文章

Verybot之OpenCV应用二:霍夫变换查找圆

其实我是想通过这个程序来测试一下,OpenCV在Verybot上跑得怎么样,霍夫变换的原理就不多说了,下面是程序: #include "cv.h"#include "highgui.h"#include "stdio.h"int main(int argc, char** argv){cvNamedWindow("vedio",0);CvCapture* capture;i

图像处理基础篇-镜像仿射透视

一.图像镜像 图像镜像是图像旋转变换的一种特殊情况,通常包括垂直方向和水平方向的镜像。水平镜像通常是以原图像的垂直中轴为中心,将图像分为左右两部分进行堆成变换。如图7-1所示: 垂直镜像通常是以原图像的水平中轴线为中心,将图像划分为上下两部分进行堆成变换的过程,示意图如图7-2所示。 在Python中主要调用OpenCV的flip()函数实现图像镜像变换,函数原型如下: dst =

【数字信号处理】一文讲清FFT(快速傅里叶变换)

目录 快速傅里叶变换(Fast Fourier Transform,FFT)FFT的背景快速傅里叶变换(Fast Fourier Transform,FFT)DFT的数学表达实际计算重要性和应用频谱泄露、频谱混叠奈奎斯特采样定理参考链接 快速傅里叶变换(Fast Fourier Transform,FFT) FFT的背景 1、为什么要时域→频域频率?50Hz+频率120Hz

傅里叶变换家族

禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》 禹晶、肖创柏、廖庆敏《数字图像处理》资源二维码

齐次变换矩阵的原理与应用

齐次变换矩阵的原理与应用 通过齐次变换矩阵,可以描述机械臂末端执行器(法兰)在三维空间中的平移和旋转操作。该矩阵结合了旋转和平移信息,用于坐标变换。 1. 齐次变换矩阵的基本形式 一个齐次变换矩阵 T是一个 4x4 矩阵,表示刚体的旋转和平移: T = [ R t 0 1 ] = [ r 11 r 12 r 13 x r 21 r 22 r 23 y r 31 r 32 r 33 z 0

MATLAB分析图像的离散余弦变换(DCT)

1. MATLAB的介绍以及所需函数的说明:  1.1 MATLAB  MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。是由美国mathworks 公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设

USACO Section 1.4 Packing Rectangles

题意: 已知4个矩形的l和w  矩形可以旋转和平移  用一块最小面积的新的矩形覆盖4个矩形 求最小的面积  以及新矩形的l和w 思路: 题目已经给出6种摆放方式  按它的方式摆即可 我们要枚举4个矩形是否旋转(只转90度)过  然后枚举每种摆放方式中矩形的编号 代码中的枚举方法是二进制枚举旋转  全排列枚举编号 最后计算所有情况中的答案 第6种摆放方式比较难想  大致思路就是

PyTorch Demo-4 : 数据变换Transforms

Transforms的函数有很多,每次都是直接copy已有的代码,但是不知道具体是什么样子,在这里记录一下 Transforms常用方法的具体说明参考链接1,链接2,或者官方文档。 原始图像采用图像处理经典的Lena: Python代码 from PIL import Imagefrom torchvision import transforms as tfimport ma

【Get深一度】小波变换通俗解释 -算法与数学之美

链接:http://www.zhihu.com/question/22864189/answer/40772083 文章推荐人:杨晓东 从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。     下面就按照傅里叶-->短时傅里叶变换-->小波变换的顺序,讲一下为什么会出现小波这个东

【Get深一度】信号处理(二)——傅里叶变换与傅里叶级数的区别与联系

1.傅里叶级数和傅里叶变换:  傅里叶级数对周期性现象做数学上的分析 傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析。 除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。要想理解傅里叶变换算法的内涵,首先要了解傅里叶原理的内涵。 傅里叶原理表明:对于任何连续测量的数字信号,都可以用不同频率的正弦波信号的无限叠加来表示。     傅里叶变