PyTorch Demo-4 : 数据变换Transforms

2024-09-05 01:38

本文主要是介绍PyTorch Demo-4 : 数据变换Transforms,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Transforms的函数有很多,每次都是直接copy已有的代码,但是不知道具体是什么样子,在这里记录一下

Transforms常用方法的具体说明参考链接1,链接2,或者官方文档。

原始图像采用图像处理经典的Lena:

在这里插入图片描述

Python代码
from PIL import Image
from torchvision import transforms as tf
import matplotlib.pyplot as pltimg = Image.open('lena.jpg')img = tf.Resize((256, 256))(img)
size = (224, 224)trans = {# Crop'RandomCrop': tf.RandomCrop(size),'CenterCrop': tf.CenterCrop(size),'RandomResizedCrop': tf.RandomResizedCrop(size=size, scale=(0.08, 1.0), ratio=(0.75, 1.333), interpolation=2),# Filp and Rotation'RandomRotation': tf.RandomRotation(30),'RandomVerFilp': tf.RandomVerticalFlip(p=1),'RandomHorFilp': tf.RandomHorizontalFlip(p=1),# Transform'Normalize': tf.Compose([tf.ToTensor(),tf.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),tf.ToPILImage()]),'RandomErasing': tf.Compose([tf.ToTensor(),tf.RandomErasing(p=1, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0),tf.ToPILImage()]),'Pad_5,10,15,20': tf.Pad((5, 10, 15, 20)),'ColorJitter_brightness': tf.ColorJitter(brightness=0.5, contrast=0, saturation=0, hue=0),'ColorJitter_contrast': tf.ColorJitter(brightness=0, contrast=0.5, saturation=0, hue=0),'ColorJitter_saturation': tf.ColorJitter(brightness=0, contrast=0, saturation=0.5, hue=0),'ColorJitter_hue': tf.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0.5),'Grayscale': tf.Grayscale(num_output_channels=1),'RandomGrayscale': tf.RandomGrayscale(p=1),# 'LinearTransformation': tf.LinearTransformation(transformation_matrix),'Affine_degrees': tf.RandomAffine(degrees=30, translate=None, fillcolor=0, scale=None, shear=None),'Affine_translate': tf.RandomAffine(degrees=0, translate=(0.2, 0.2), fillcolor=0, scale=None, shear=None),'Affine_scale': tf.RandomAffine(degrees=0, translate=None, fillcolor=0, scale=(0.7, 0.7), shear=None),'Affine_shear': tf.RandomAffine(degrees=0, translate=None, fillcolor=0, scale=None, shear=(0, 0, 0, 45)),
}for k, t in trans.items():print(k)img_ = t(img)plt.title(k)plt.axis('off')plt.imshow(img_)plt.savefig('./tf/%s.jpg' % k, bbox_inches='tight')
实现效果
Crop
Flip and Rotation
Transform

在这里插入图片描述

这篇关于PyTorch Demo-4 : 数据变换Transforms的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1137610

相关文章

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt