Data + AI Summit 欧洲2020全部超清 PPT 下载

2024-02-23 21:50

本文主要是介绍Data + AI Summit 欧洲2020全部超清 PPT 下载,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Data + AI Summit Europe 2020 原 Spark + AI Summit Europe 于2020年11月17日至19日举行。由于新冠疫情影响,本次会议和六月份举办的会议一样在线举办,一共为期三天,第一天是培训,第二天和第三天是正式会议。会议涵盖来自从业者的技术内容,他们将使用 Apache Spark™、Delta Lake、MLflow、Structured Streaming、BI和SQL分析、深度学习和机器学习框架来解决棘手的数据问题。会议的全部日程请参见:https://databricks.com/dataaisummit/europe-2020/agenda。

和今年六月份会议不一样,这次会议的 KeyNote 没什么劲爆的消息,不过会议的第二天和第三天还是有些干货大家可以看下的。在接下来的几天,本公众号也会对一些比较有意思的议题进行介绍,敬请关注本公众号。

本次会议的议题范围具体如下:

•人工智能用户案例以及新的机会;•Apache Spark™, Delta Lake, MLflow 等最佳实践和用户案例;•数据工程,包括流架构•使用数据仓库(data warehouse)和数据湖(data lakes)进行 SQL 分析和 BI;•数据科学,包括 Python 生态系统;•机器学习和深度学习应用•生产机器学习(MLOps)•大规模数据分析和ML研究•工业界的用户案例 

下载途径

关注微信公众号 过往记忆大数据 或者 Java与大数据架构 并回复 spark-9902 获取。

可下载的PPT

下面议题提供 PPT 下载,共129个。注意,访问 https://www.iteblog.com/archives/9902.html 页面可以在线观看全部 PPT。

•3D: DBT using Databricks and Delta•Accelerated Training of Transformer Models•Achieving Lakehouse Models with Spark 3.0•Acoustics & AI for Conservation•Active Governance Across the Delta Lake with Alation•Add Historical Analysis of Operational Data with Easy Configurations in Fivetran Automated Data Integration•Advanced Natural Language Processing with Apache Spark NLP•Apache Liminal (Incubating)—Orchestrate the Machine Learning Pipeline•Apache Spark Streaming in K8s with ArgoCD & Spark Operator•Apply MLOps at Scale•Arbitrary Stateful Aggregation and MERGE INTO•Bank Struggles Along the Way for the Holy Grail of Personalization: Customer 360•Building a Cross Cloud Data Protection Engine•Building a Distributed Collaborative Data Pipeline with Apache Spark•Building a MLOps Platform Around MLflow to Enable Model Productionalization in Just a Few Minutes•Building a Real-Time Supply Chain View: How Gousto Merges Incoming Streams of Inventory - - Data at Scale to Track Ingredients Throughout its Supply Chain•Building a SIMD Supported Vectorized Native Engine for Spark SQL•Building a Streaming Data Pipeline for Trains Delays Processing•Building a Streaming Microservices Architecture•Building an ML Tool to predict Article Quality Scores using Delta & MLFlow•Building Identity Graph at Scale for Programmatic Media Buying Using Apache Spark and Delta Lake•Building Notebook-based AI Pipelines with Elyra and Kubeflow•Building the Next-gen Digital Meter Platform for Fluvius•CI/CD Templates: Continuous Delivery of ML-Enabled Data Pipelines on Databricks•Cloud-native Semantic Layer on Data Lake•Common Strategies for Improving Performance on Your Delta Lakehouse•Comprehensive View on Date-time APIs of Apache Spark 3.0•Containerized Stream Engine to Build Modern Delta Lake•Context-aware Fast Food Recommendation with Ray on Apache Spark at Burger King•Continuous Delivery of Deep Transformer-Based NLP Models Using MLflow and AWS SageMaker for Enterprise AI Scenarios•Cost Efficiency Strategies for Managed Apache Spark Service•Data Engineers in Uncertain Times: A COVID-19 Case Study•Data Mesh in Practice: How Europe’s Leading Online Platform for Fashion Goes Beyond the Data Lake•Data Privacy with Apache Spark: Defensive and Offensive Approaches•Data Time Travel by Delta Time Machine•Data Time Travel by Delta Time Machine•Data Versioning and Reproducible ML with DVC and MLflow•Databricks University Alliance Meetup - Data + AI Summit EU 2020•Databricks Whitelabel: Making Petabyte Scale Data Consumable to All Our Customers•Delta: Building Merge on Read•Delta Lake: Optimizing Merge•Designing and Implementing a Real-time Data Lake with Dynamically Changing Schema•Detecting and Recognising Highly Arbitrary Shaped Texts from Product Images•Deterministic Machine Learning with MLflow and mlf-core•Developing ML-enabled Data Pipelines on Databricks using IDE & CI/CD at Runtastic•Digital Turbine Adopts A Lakehouse to Scale to Their Analytics Needs•Distributed and Scalable Model Lifecycle Capabilities•Diving into Delta Lake: Unpacking the Transaction Log•eBay’s Work on Dynamic Partition Pruning & Runtime Filter•Efficient Query Processing Using Machine Learning•Embedding Insight through Prediction Driven Logistics•End to End Supply Chain Control Tower•Extending Apache Spark – Beyond Spark Session Extensions•Foundations of Data Teams•Frequently Bought Together Recommendations Based on Embeddings•From Query Plan to Query Performance: Supercharging your Apache Spark Queries using the Spark UI SQL Tab•From Zero to Hero with Kafka Connect•Generalized Pipeline Parallelism for DNN Training•Getting Started with Apache Spark on Kubernetes•Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads•How a Media Data Platform Drives Real-time Insights & Analytics using Apache Spark•How The Weather Company Uses Apache Spark to Serve Weather Data Fast at Low Cost•Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and Parquet Reader•Introducing MLflow for End-to-End Machine Learning on Databricks•Koalas: Interoperability Between Koalas and Apache Spark•Leveraging Apache Spark and Delta Lake for Efficient Data Encryption at Scale•Livestream Economy: The Application of Real-time Media and Algorithmic Personalisation in Urbanism•Materialized Column: An Efficient Way to Optimize Queries on Nested Columns•MATS stack (MLFlow, Airflow, Tensorflow, Spark) for Cross-system Orchestration of Machine Learning Pipelines•MIDAS: Microcluster-Based Detector of Anomalies in Edge Streams•Migrate and Modernize Hadoop-Based Security Policies for Databricks•Migrating Airflow-based Apache Spark Jobs to Kubernetes – the Native Way•ML Production Pipelines: A Classification Model•ML, Statistics, and Spark with Databricks for Maximizing Revenue in a Delayed Feedback Environment•MLflow at Company Scale•MLOps Using MLflow•Model Experiments Tracking and Registration using MLflow on Databricks•Monitoring Half a Million ML Models, IoT Streaming Data, and Automated Quality Check on Delta Lake•Moving to Databricks & Delta•NLP Text Recommendation System Journey to Automated Training•Operating and Supporting Delta Lake in Production•Optimising Geospatial Queries with Dynamic File Pruning•Optimizing Apache Spark UDFs•Our Journey to Release a Patient-Centric AI App to Reduce Public Health Costs•Parallel Ablation Studies for Machine Learning with Maggy on Apache Spark•Personalization Journey: From Single Node to Cloud Streaming•Photon Technical Deep Dive: How to Think Vectorized•Polymorphic Table Functions: The Best Way to Integrate SQL and Apache Spark•Presto: Fast SQL-on-Anything (including Delta Lake, Snowflake, Elasticsearch and More!)•Productionizing Real-time Serving With MLflow•Project Zen: Improving Apache Spark for Python Users•Query or Not to Query? Using Apache Spark Metrics to Highlight Potentially Problematic Queries•Ray and Its Growing Ecosystem•Real-time Feature Engineering with Apache Spark Streaming and Hof•Real-Time Health Score Application using Apache Spark on Kubernetes•Reproducible AI Using PyTorch and MLflow•Reproducible AI Using PyTorch and MLflow•Revealing the Power of Legacy Machine Data•Scale and Optimize Data Engineering Pipelines with Software Engineering Best Practices: Modularity and Automated Testing•Scale-Out Using Spark in Serverless Herd Mode!•Scaling Machine Learning Feature Engineering in Apache Spark at Facebook•Scaling Machine Learning with Apache Spark•Seamless MLOps with Seldon and MLflow•SHAP & Game Theory For Recommendation Systems•Simplifying AI integration on Apache Spark•Skew Mitigation For Facebook PetabyteScale Joins•Solving Data Discovery Challenges at Lyft with Amundsen, an Open-source Metadata Platform•Spark NLP: State of the Art Natural Language Processing at Scale•Spark SQL Beyond Official Documentation•Spark SQL Join Improvement at Facebook•Speeding Time to Insight with a Modern ELT Approach•Stateful Streaming with Apache Spark: How to Update Decision Logic at Runtime•Stories from the Financial Service AI Trenches: Lessons Learned from Building AI Models in EY•Streaming Inference with Apache Beam and TFX•TeraCache: Efficient Caching Over Fast Storage Devices•The Beauty of (Big) Data Privacy Engineering•The Hidden Value of Hadoop Migration•The Modern Data Team for the Modern Data Stack: dbt and the Role of the Analytics Engineer•The Pill for Your Migration Hell•Transforming GE Healthcare with Data Platform Strategy•Trust, Context and, Regulation: Achieving More Explainable AI in Financial Services•Unlocking Geospatial Analytics Use Cases with CARTO and Databricks•Using Delta Lake to Transform a Legacy Apache Spark to Support Complex Update/Delete SQL Operation•Using Machine Learning at Scale: A Gaming Industry Experience!•Using Machine Learning at Scale: A Gaming Industry Experience!•Using NLP to Explore Entity Relationships in COVID-19 Literature•Using Redash for SQL Analytics on Databricks•What is New with Apache Spark Performance Monitoring in Spark 3.0•X-RAIS: The Third Eye

Java与大数据架构

7年老码农,10W+关注者。【Java与大数据架构】全面分享Java编程、Spark、Flink、Kafka、Elasticsearch、数据湖等干货。欢迎扫码关注!

这篇关于Data + AI Summit 欧洲2020全部超清 PPT 下载的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740033

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

常用的jdk下载地址

jdk下载地址 安装方式可以看之前的博客: mac安装jdk oracle 版本:https://www.oracle.com/java/technologies/downloads/ Eclipse Temurin版本:https://adoptium.net/zh-CN/temurin/releases/ 阿里版本: github:https://github.com/

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti