机器学习Day2-机器学习算法过程没有免费午餐定理

2024-02-23 20:50

本文主要是介绍机器学习Day2-机器学习算法过程没有免费午餐定理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、机器学习算法过程

大部分人认为随着大数据和深度学习的发展,只要将网上的数据随意的放进模型中,就可以实现了,其实这是一个错误的观点【笔者一开始也是这样想的】,确实有时候能得到正确的结论,但是大部分是错的

1.特征提取【Feature Extraction

  • 通过训练样本获得的,对机器学习任务有帮助的多维度数据

  • 机器学习的重点不是为了研究如何去提取特征

  • 机器学习的重点:假设在已经提取好特征的前提下,去如何构造算法获得更好的性能

  • 当然也不是提取特征不重要,如果我们提取了好的特征,那么我们机器就能获得不错的性能,相反,如果我们提取的特征很差,即使我们有非常大的机器学习的算法,也是不可能获得好的性能的,

2.为什么不以特征提取为重点?

这是因为不同的任务提取特征的方式是不同的,针对不同的煤质不同的任务,提取特征的方式是千变万化的,【例如语音、图像、视频等】,要是以此为重点,即使花费几门课也讲不完,因此机器学习注重于在假设已经获得特征的前提下,去研究合理的算法,去让学习系统获得更好的性能。

3.特征选择【Feature Selection

    • 例子

  • 我们可以发现,白细胞和红细胞在周长和面积这两个特征中的重合度很少,而其圆形度,虽然红细胞在白细胞的上方,但是重合度很大,因此如果我们采用圆形度作为区分白细胞和红细胞的特征,那么其识别率并不会很高,这两种在其他方面的重合度也很大,因此,我们会采取重合度少的周长和面积,作为区分白细胞和红细胞的特征,以此来构建机器学习的系统。

4.算法构建

那么如何以这两种特征来构建算法呢?他们采取了支持向量机【Support Vector Machine】,一共有三种内核,可以把下列的三种看做三种算法模式

  1. 线性内核

  1. 多项式内核

  1. 高斯径向基函数核

5.特征空间【Feature Space

  • 基于上述两种特征,研究者将白细胞和红细胞画到了同一个二维空间中,其中横坐标代表面积纵坐标代表周长,以此去描点,并做了一定程度的归一,将这两个特征的值归一化到【-1,1】,在这个例子中,我们把这个二维空间成为特征空间【Feature Space】,如果在其他方面,有多个特征,那么特征空间可以是多维的。

  • 那么基于之前提到的三种算法,我们在图纸上画出了三条不同的分界线,一旦我们画出这一线条,那么就代表我们机器学习的过程就已经结束了。

  • 为何这么说呢,例如,这时候来了一个新的样本,我们计算它的周长和面积,再进行一定程度上的归一,再画到这张图上,看是在这一条线的那一侧,就可以进行分类了

  • 在此有两个概念【维度和标准】,【维度】有人说,我一眼就能画出这条线,那是因为这里的维度是二维的,那么如果,维度是上万维,那么你还能看出来吗?人眼对于多维是缺乏想象力的。【标准】上述基于三种算法,画出的线,对于某些区域的划分是不一样的,例如,第二张图片和第三张图片的左下侧

  • 那么哪种算法更好呢,我们针对于不同的情况,需要去采取不同的方法,这个没有绝对意义的好和坏的标准,因为我们采取的数据是有限的,当然我们也不可能穷尽所有的样本数据,如何针对不同的应用场景,选择不同的机器学习算法,构造新的机器学习算法,解决目前无法解决的应用场景,这是一个理论和实践的科学过程

二、没有免费午餐定理【No Free Lunch Theorem

  • 针对于之前提出的哪种算法更好,我们在这给出一个初步的回答,1995年,D.H.Wolpert等人提出了没有免费午餐定理【No Free Lunch Theorem

  • 定理概述:任何一个预测函数,如果在一些训练样本上表现好,那么必然在另一些训练样本表现不好,如果不对数据在特征空间的先验分布有一定的假设,那么表现好与表现不好的情况一样多,因此不存在,任何情况下都是非常完美的机器学习算法

  • 对于先验分布概率,有如下要求

那么,这一假设有道理吗?有道理,但是也可能出错

基于没有免费午餐定理,我们如果不对特征空间的先验分布有要求,那么所以算法的表现概率都是一样的,我们不能片面的去夸大这一定理的作用,从而对开发新的算法丧失信心,但是我们要时刻牢记这一定理的提醒,

因此,再好的算法,也会有犯错的可能,【没有免费午餐定理】告诉我们,没有放之四海皆准的算法,没有人能知道先验样本的假设【就像,明天的太阳一定会升起吗】

这篇关于机器学习Day2-机器学习算法过程没有免费午餐定理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/739891

相关文章

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

SpringCloud之LoadBalancer负载均衡服务调用过程

《SpringCloud之LoadBalancer负载均衡服务调用过程》:本文主要介绍SpringCloud之LoadBalancer负载均衡服务调用过程,具有很好的参考价值,希望对大家有所帮助,... 目录前言一、LoadBalancer是什么?二、使用步骤1、启动consul2、客户端加入依赖3、以服务

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

电脑报错cxcore100.dll丢失怎么办? 多种免费修复缺失的cxcore100.dll文件的技巧

《电脑报错cxcore100.dll丢失怎么办?多种免费修复缺失的cxcore100.dll文件的技巧》你是否也遇到过“由于找不到cxcore100.dll,无法继续执行代码,重新安装程序可能会解... 当电脑报错“cxcore100.dll未找到”时,这通常意味着系统无法找到或加载这编程个必要的动态链接库

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx