Android LruCache源码分析

2024-02-23 18:44
文章标签 分析 android 源码 lrucache

本文主要是介绍Android LruCache源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Android LruCache源码分析
    • 概述
    • LruCache和LinkedHashMap关系
    • 源码分析
      • 属性
      • 写入数据
      • 读取数据
      • 删除缓存

Android LruCache源码分析

概述

LruCache(Least Recently Used Cache,最近最少使用缓存)是 Android 中的一种缓存机制。

根据数据的使用频率淘汰减少使用的数据,当需要缓存新数据时,如果缓存已满,LruCache 会淘汰最近最少使用的数据,腾出空间给新数据。

img

LruCache和LinkedHashMap关系

LruCache 内部使用的是 LinkedHashMap(链式哈希表),这是因为 LinkedHashMap 的构造函数里有个布尔参数 accessOrder,当它为 true 时,LinkedHashMap 会以访问顺序的方式排列元素,如下:

Map<Integer, Integer> map = new LinkedHashMap<>(5, 0.75F, true);
map.put(1, 1);
map.put(2, 2);
map.put(3, 3);
map.put(4, 4);
map.put(5, 5);
for (Map.Entry<Integer, Integer> entry : map.entrySet()) {System.out.println(entry.getValue());
}/** 1* 2* 3* 4* 5*/
// 访问2个元素
map.get(3); 
map.get(4);
for (Map.Entry<Integer, Integer> entry : map.entrySet()) {System.out.println(entry.getValue());
}/** 1* 2* 5* 3* 4*/

最近访问的2个元素被移动到尾部,LruCache 也是从尾部访问数据,在表头删除数据。

源码分析

属性

public class LruCache<K, V> {private final LinkedHashMap<K, V> map;   // 当前缓存大小private int size;// 最大缓存容量private int maxSize;// 写入计数private int putCount;// 创建计数private int createCount;// 淘汰计数private int evictionCount;// 缓存命中计数private int hitCount;// 缓存未命计数private int missCount;
}

写入数据

public final V put(K key, V value) {// 如果值为null,则抛出异常if (key == null || value == null) {throw new NullPointerException("key == null || value == null");}V previous;// 加锁,线程安全synchronized (this) {// 写入计数putCount++;// 通过sizeOf()计算当前项的大小,并累加已有缓存大小size += safeSizeOf(key, value);// 写入操作previous = map.put(key, value);// 如果previous为null表示为新增数据,如果previous不为null表示为修改数据if (previous != null) {// 修改数据需要将size恢复到以前的大小size -= safeSizeOf(key, previous);}}// 回调entryRemoved()方法if (previous != null) {entryRemoved(false, key, previous, value);}// 调整缓存大小trimToSize(maxSize);return previous;
}// 调整缓存大小
public void trimToSize(int maxSize) {// 死循环while (true) {K key;V value;synchronized (this) {// 缓存未满,直接返回if (size <= maxSize || map.isEmpty()) {break;}// 缓存已满情况// 从表头遍历,获取元素Map.Entry<K, V> toEvict = map.entrySet().iterator().next();key = toEvict.getKey();value = toEvict.getValue();// 删除元素map.remove(key);// 减少删除元素的缓存size -= safeSizeOf(key, value);// 删除计数evictionCount++;}// 回调entryRemoved()方法entryRemoved(true, key, value, null);}
}
  • 插入元素,并增加已缓存的大小。
  • 调用 trimToSize() 方法,调整缓存大小。

读取数据

public final V get(@NonNull K key) {if (key == null) {throw new NullPointerException("key == null");}V mapValue;synchronized (this) {// 获取元素,LinkedHashMap会将这个元素移动到表尾mapValue = map.get(key);if (mapValue != null) {hitCount++;return mapValue;}missCount++;}// 没有元素时,会回调create()方法V createdValue = create(key);if (createdValue == null) {return null;}// 下面和put()流程相同synchronized (this) {createCount++;mapValue = map.put(key, createdValue);if (mapValue != null) {map.put(key, mapValue);} else {size += safeSizeOf(key, createdValue);}}if (mapValue != null) {entryRemoved(false, key, createdValue, mapValue);return mapValue;} else {trimToSize(maxSize);return createdValue;}
}
  • 最终调用 LinkedHashMap#get() 方法,因为accessOrder为true ,因此元素会移动到表尾。
  • 如果没有获取到元素时,会调用 create() 方法创建元素,接着执行put()流程。

删除缓存

public final V remove(@NonNull K key) {if (key == null) {throw new NullPointerException("key == null");}V previous;synchronized (this) {// 调用LinkedHashMap#remove()方法删除元素previous = map.remove(key);if (previous != null) {size -= safeSizeOf(key, previous);}}if (previous != null) {entryRemoved(false, key, previous, null);}return previous;
}
  • 调用 LinkedHashMap#remove() 方法删除元素。

这篇关于Android LruCache源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/739578

相关文章

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

Android开发中gradle下载缓慢的问题级解决方法

《Android开发中gradle下载缓慢的问题级解决方法》本文介绍了解决Android开发中Gradle下载缓慢问题的几种方法,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、网络环境优化二、Gradle版本与配置优化三、其他优化措施针对android开发中Gradle下载缓慢的问

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Android里面的Service种类以及启动方式

《Android里面的Service种类以及启动方式》Android中的Service分为前台服务和后台服务,前台服务需要亮身份牌并显示通知,后台服务则有启动方式选择,包括startService和b... 目录一句话总结:一、Service 的两种类型:1. 前台服务(必须亮身份牌)2. 后台服务(偷偷干

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操