[总结] 浅谈渐进式优化LinuxPcap抓包历程(部分附代码)

2024-02-23 13:12

本文主要是介绍[总结] 浅谈渐进式优化LinuxPcap抓包历程(部分附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 历程
    • 使用阻塞式pcap_loop
    • 使用非阻塞式pcap_dispatch
    • 优化1多网卡名创建一个pcap实例
    • 优化2使用select异步监听fd
  • 总结

前言

最近一直在做pcap抓包,需求很简单就是指定一个或多个bpf语句抓计算机上所有网卡。
不考虑性能开销和资源开销的话,实现方式很多。

历程

使用阻塞式pcap_loop

不考虑性能开销和资源开销的话的实现方式很多。

浅谈最简单的一种:

  • 使用单线程阻塞式的pcap_loop,一个线程抓一个网卡和一种bpf语句。
    • 优点:实现简单。
    • 缺点:资源开销大,线程数 = bpf数量 * 网卡数。

大致实现:


那么如何减少线程数量呢?
那就不得不提pcap_dispatch方法

使用非阻塞式pcap_dispatch

pcap_dispatch函数是非阻塞的,即可以使用循环的方式轮询查找是否捕获到数据包。

思路:

  • 根据bpf和网卡创建pcap实例
  • 所有pcap都放在一个线程使用轮询方式查找
  • 抓包成功会自动调用回调
    • 优化:线程数量大幅度减少,
    • 缺点:1.线程数 = bpf数量 2.需要创建大量网卡数量的pcap实例

优化1多网卡名创建一个pcap实例

利用pcap创建时device_name=“any”,使之多个网卡对应一个pcap实例
思路:

  • 根据bpf和网卡创建pcap实例
  • pcap都放在一个线程使用轮询方式查找
  • 抓包成功会自动调用回调
    • 优化:多个网卡对应一个pcap实例,减少了pcap实例数量
    • 缺点:
    1. 线程数 = bpf数量,pcap实例数=bpf数量,
    2. pcap_callback回调函数需要特殊解析数据包,使用any设备名,数据包结构会发生变化,需要特殊调整和特别解析。
    3. 多实例放在一个循环中可能会造成超时,影响后一个pcap实例的延迟处理

优化2使用select异步监听fd

利用pcap_get_select_fd获取socket fd,再使用select函数监听处理
思路:

  • 根据不同的bpf和多个网卡创建pcap实例
  • bpf数量的pcap都放在一个线程使用轮询方式查找
  • 抓包成功会自动调用回调
    • 优化:
      1. 线程数只有1,pcap实例数=bpf数量
      2. select去除了非响应的pcap实例,减少了pcap实例的超时造成的延迟影响
      3. 如果使用多个网卡创建多个pcap的方法影响也几乎没有影响 并且callback不需要特殊解析数据包
    • 缺点:几乎没有
#include <mutex>
#include <algorithm>
#include <map>
#include <unordered_map>
#include <list>
#include <queue>
#include <string>
#include <sstream>
#include <chrono>#include <sys/time.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/ip6.h>
#include <netinet/ip.h>
#include <string.h>
#include <dirent.h>#include <netinet/tcp.h>
#include <netinet/ip_icmp.h>
#include <netinet/ether.h>#include <pcap.h>void PcapCallback(u_char* argument, const struct pcap_pkthdr* packet_header, const u_char* packet_content) {// to do something
}pcap_t * create_pcap(const char * dev, const std::string &str_filter_exp,  std::mutex *mutex){char errbuf[PCAP_ERRBUF_SIZE]; // 存储错误信息的缓冲区int snaplen = 65535; // 捕获数据包的长度int promisc = 0; // 混杂模式int to_ms = 1000; // 等待捕获的超时时间// 打开捕获设备pcap_t* handle = pcap_create(dev, errbuf);if (handle == nullptr) {printf("Could not create pcap handle: %s\n", errbuf);return nullptr;}struct bpf_program filter;pcap_set_snaplen(handle, snaplen);pcap_set_promisc(handle, promisc);pcap_set_timeout(handle, to_ms);pcap_compile(handle, &filter, str_filter_exp.c_str(), 1, 0);pcap_setfilter(handle, &filter);pcap_set_buffer_size(handle, 20 * 1024 * 1024);// pcap_set_immediate_mode(handle, 1);      // 开启immediate模式if (pcap_activate(handle) != 0) {printf("Could not activate pcap handle: %s\n", pcap_geterr(handle));pcap_close(handle);return nullptr;}return handle;
}int main() {char errbuf[PCAP_ERRBUF_SIZE];pcap_if_t* alldevs;pcap_if_t* device;// 获取系统上的所有网络设备if (pcap_findalldevs(&alldevs, errbuf) == -1) {printf("Error finding devices: %s", errbuf);return 1;}std::vector<int> fds;std::vector<pcap *> pds;for (device = alldevs; device != nullptr; device = device->next) {for(pcap_addr_t *a=device->addresses; a!=NULL; a=a->next) {if(a->addr->sa_family == AF_INET){char* sz_ip_addr = inet_ntoa(((struct sockaddr_in*)a->addr)->sin_addr);std::string str_bpf_str = "tcp";pcap_t* pcap = create_pcap(device->name, str_filter_exp, nullptr);int fd = pcap_get_selectable_fd(pcap);fds.push_back(fd);pds.push_back(pcap);}}}// 释放设备列表pcap_freealldevs(alldevs);while (true){fd_set read_fds;FD_ZERO(&read_fds);int max_fd = 0;for (auto &one : fds){if (one > max_fd){max_fd = one;}FD_SET(one, &read_fds);}struct timeval timeout;timeout.tv_sec = 5;timeout.tv_usec = 0;int result = select(max_fd + 1, &read_fds, NULL, NULL, &timeout);if (result == -1){printf("error: select");break;}else if (result > 0){std::vector<std::size_t> pds_indexs;for (std::size_t i = 0; i < fds.size(); i++){if (FD_ISSET(fds[i], &read_fds)){pds_indexs.emplace_back(i);}}for (std::size_t id = 0; id < pds_indexs.size(); id++){std::size_t i = pds_indexs[id];//set_ns(containers[i].pid);int status =pcap_dispatch(pds[i], -1, PcapCallback, nullptr);if (status < 0)break;}}else{printf("Timeout!\n");}}for (auto &one : pds){pcap_close(one);}return 0;
}

总结

优化过程很长,主要考虑是线程数量的优化,以及使用非阻塞函数pcap_dispatch过程中产生pcap实例延迟问题。

记下此文希望大家都能掌握这些技巧。

这篇关于[总结] 浅谈渐进式优化LinuxPcap抓包历程(部分附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/738754

相关文章

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪