手把手粗糙解析KMP算法

2024-02-23 11:38

本文主要是介绍手把手粗糙解析KMP算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在介绍KMP算法之前,要介绍另一个算法——BF(Brute Force)算法,也就是传说中的男朋友算法(Boy Friend),这是对字符串是否匹配一种简单粗暴的算法,但是通常简单粗暴的算法的执行效率并不怎么样,KMP算法(看毛片)是对BF算法的基础上进行的一种优化,从而大大提升了执行效率,下面先讲一下BF算法是个什么东西。
假如此时,我们有一个字符串 T=bbcabcdababcdabcdabde 我们要查找的字符串是M=abcdabd
当我们用BF算法进行匹配时,我们一个一个的进行匹配也就是

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串
a  b  c  d  a  b  d                                            //M字符串
0  1  2  3  4  5  6                                            //指针

T[0]!=M[0],不一样咋整来,不能懵逼啊,既然第一个不相等,那就继续往后移一位呗,M字符串后移一位,变成如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                         //M字符串0  1  2  3  4  5  6                                         //指针

wtf,T[1]!=M[0],继续后移吧,就这样一直移 移到了下面这样

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                   //M字符串0  1  2  3  4  5  6                                   //指针

下面我们进行对比了啊T[3]==M[0],T[4]==M[1],T[5]==M[2],T[6]==M[3],T[7]==M[4],T[8]==M[5] (有点后悔选这么长的字符串了),T[9]!=M[6],不一样 ,又要继续后移一位,变成如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                //M字符串0  1  2  3  4  5  6                                //指针

继续进行对比,如果不同就后移一位,直到匹配完成。如果你之前不知道BF算法,还是一步一步的对比完,不要跳,BF算法是KMP算法的基础,很关键。
我们先不看KMP算法,我们先自己想一下,BF算法究竟傻在哪里,用座山雕的话说就是:一个字,BF算法傻在累。当我们进行到这一步时,特别的突出

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                   //M字符串0  1  2  3  4  5  6                                   //指针

我们比较了好几位,我们从T[3]一直比到T[9]才发现不一样,在进行下一步的时候,

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                //M字符串0  1  2  3  4  5  6                                //指针

又从T[4]开始比较了,这就是浪费了啊,既然我们在上一个步骤已经比到T[9]了,说明T[3]~T[8]与我们的M字符串的M[0]~M[5]相同啊 ,我们一定要记住这一点
如果我们按照BF算法右移一位,对比M[0]与T[4],因为之前我们知道M[1]==T[4],所以我们直接就可以对比M字符串的M[1],M[0]与M[1]比较,找到这个规律了,我们思考在这上面能不能做点文章呢?
我们在观察一下M字符串

a  b  c  d  a  b  d                                //M字符串
0  1  2  3  4  5  6                                //指针

如果M[6]处发生了失配(不是适配),也就是说M[0]~M[5]与T字符串上的相等,按照上面的规律,M[0]!=M[1]!=M[2]!=M[3]==M[4],所以 我们就可以直接将右移到bcd 处的步骤省掉,直接匹配到M[4]处(也就是直接匹配到T对应的的字符的地方),哈哈,我们已经对BF算法进行了优化,我们再想想 我们还能再进行优化嘛?
当我们直接匹配到M[4]处时(也就是直接匹配到T对应的的字符的地方),下一步该怎么做了,是不是应该比对M[1]与M[5](也就是比对T对应的的字符的地方),如果相等,我们就继续比对下一个位置,但是如果不相等的话,那么,我们直接匹配到M[4]处 的操作也是没有用的,那么如何把这个操作也扔掉呢?
我们直接比对两位就好了嘛,在M字符串中,我们直接找zM在发生失配的位置前面,是否存在着M[0~1]也就是ab这种组合的字符组合,直接移到这里就行了嘛,我们在依次扩大一下 三位呢?四位呢?五位呢? 很多位呢?
可是我们怎么让电脑知道在发生失配之前到底应该移动M字符串几位呢?
假设我们不知道T字符串,只知道M字符串,所以我们对M字符串进行分析

a  b  c  d  a  b  d                                //M字符串
0  1  2  3  4  5  6                                //指针
  1. 如果在a的位置也就是M[0]的位置就发生失配,我们要右移一位,这个是无法避免的。我们用数组nextMove[]记录在这个位置发生失配时,应该右移几位,现在nextMove[0]=1
  2. 如果我们在b的位置,也就是M[1]的位置发生失配,因为在b之前有一个元素a,a无法与其他的位置进行比较,所以只能右移一位。nextMove[1]=1
  3. 如果我们在c的位置发生失配,也就是M[2]的地方发生失配,所以我们知道前面已经有两个元素匹配成功了,我们对比M[0]与M[1],如果相同,就右移一位,如果不相同,就右移两位。现在不相同,应该右移两位,nextMove[2]=2
  4. 如果我们在d的位置发生失配,也就是M[3]的位置发生失配,ab!=bc a!=c 也就是M[0~1]!=M[1~2],M[0]!=M[2],我们要先比较长的,在比较短的,应为如果长的能够相同,我们就不必比较短的了。此时nextMove[3]=3
  5. 如果我们在a的位置发生失配,也就是M[4]的位置发生失配,abc!=bcd ,ab!=cd ,a!=d,也就是M[0~2]!=M[1~3],M[0~1]!=M[2~3],M[0]!=M[3],所以nextMove[4]=4
  6. 如果我们在b的位置发生失配,也就是M[5]的位置发生失配,abcd!=bcda ,abc!=cda , ab!=da , a=a 也就是M[0~3]!=M[1~4] , M[0~2]!=M[2~4], M[0~1]!=M[3~4],M[0]==M[4],我们找到一个元素相同了,所以直接跳到这个元素就行了,所以nextMove[5]=4=已匹配的位数-元素相同的位数
  7. 如果我们在d的位置发生失配,也就是M[6]的位置发生失配,abcda!=bcdab, abcd!=cdab , abc!=dab , ab=ab,也就是M[0~4]!=M[1~5],M[0~3]!=M[2~5] , M[0~2]!=M[3~5],M[0~1]==M[4~5],所以直接跳到这个元素,nextMove[6]=4
1  1  2  3  4  4  4                                //nextMove[]
a  b  c  d  a  b  d                                //M字符串
0  1  2  3  4  5  6                                //指针

所以下一跳的表就出来了,当我们在M[n]处失配时,只需要取得nextMove[n]的值,将M字符串向右移nextMove[n]位 就好了。
下面我们在做一次匹配,

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串
a  b  c  d  a  b  d                                            //M字符串
0  1  2  3  4  5  6                                            //指针

第一位不匹配,查表,我们需要向右移一位,变成如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                         //M字符串0  1  2  3  4  5  6                                         //指针

还是不同,查表,向右移一位

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                      //M字符串0  1  2  3  4  5  6                                      //指针

还是第一位不同,查表,向右移一位

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                   //M字符串0  1  2  3  4  5  6                                   //指针

我们发现到了这一步,只有M[6]不同,我们查表可知,需要右移四步,如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                       //M字符串0  1  2  3  4  5  6                       //指针

这一步我们发现在M[2]处不同,查表,需要右移两位,如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                 //M字符串0  1  2  3  4  5  6                 //指针

在M[6]处不同,查表,需要右移四位,如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d     //M字符串0  1  2  3  4  5  6     //指针

匹配成功!!!

得来 到这一步 你就已经掌握了KMP的原理了,哈哈哈哈哈。
下面是实现代码

public class Demo {public static void main(String[] args) {String text = "bbcabcdababcdabcdabde";String mode = "abcdabd";System.out.println(text.length() + "____>" + KMP(text, mode));}private static int KMP(String inText, String inMode) {char[] charText = inText.toCharArray();char[] charMode = inMode.toCharArray();if (inText.length() < inMode.length()) {return -1;}int[] arrNext = new int[inMode.length() + 1];Next(inMode, arrNext);int i, j; // i是主串游标 j是模式串游标for (i = j = 0; i < inText.length() && j < inMode.length();) {if (j == -1 || // 模式串游标已经回退到第一个位置charText[i] == charMode[j]) // 当前字符匹配成功{ // 满足以上两种情况时两个游标都要向前进一步++i;++j;} else // 匹配不成功,模式串游标回退到当前字符的arrNext值{j = arrNext[j];}}if (j >= inMode.length()) {return i - inMode.length();} else {return -1;}}private static void Next(String inMode, int[] arrNext) {char[] charMode = inMode.toCharArray();arrNext[0] = -1;for (int i = 0, j = -1; i < inMode.length();) { // i是主串游标 j是模式串的游标if (j == -1 || // 如果模式串游标已经回退到第一个字符charMode[i] == charMode[j]) // 如果匹配成功{ // 两个游标都向前走一步++i;++j;arrNext[i] = j; // 存放当前的arrNext值为此时模式串的游标值} else // 匹配不成功j就回退到上一个arrNext值{j = arrNext[j];}}}}

这篇关于手把手粗糙解析KMP算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/738501

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图