手把手粗糙解析KMP算法

2024-02-23 11:38

本文主要是介绍手把手粗糙解析KMP算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在介绍KMP算法之前,要介绍另一个算法——BF(Brute Force)算法,也就是传说中的男朋友算法(Boy Friend),这是对字符串是否匹配一种简单粗暴的算法,但是通常简单粗暴的算法的执行效率并不怎么样,KMP算法(看毛片)是对BF算法的基础上进行的一种优化,从而大大提升了执行效率,下面先讲一下BF算法是个什么东西。
假如此时,我们有一个字符串 T=bbcabcdababcdabcdabde 我们要查找的字符串是M=abcdabd
当我们用BF算法进行匹配时,我们一个一个的进行匹配也就是

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串
a  b  c  d  a  b  d                                            //M字符串
0  1  2  3  4  5  6                                            //指针

T[0]!=M[0],不一样咋整来,不能懵逼啊,既然第一个不相等,那就继续往后移一位呗,M字符串后移一位,变成如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                         //M字符串0  1  2  3  4  5  6                                         //指针

wtf,T[1]!=M[0],继续后移吧,就这样一直移 移到了下面这样

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                   //M字符串0  1  2  3  4  5  6                                   //指针

下面我们进行对比了啊T[3]==M[0],T[4]==M[1],T[5]==M[2],T[6]==M[3],T[7]==M[4],T[8]==M[5] (有点后悔选这么长的字符串了),T[9]!=M[6],不一样 ,又要继续后移一位,变成如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                //M字符串0  1  2  3  4  5  6                                //指针

继续进行对比,如果不同就后移一位,直到匹配完成。如果你之前不知道BF算法,还是一步一步的对比完,不要跳,BF算法是KMP算法的基础,很关键。
我们先不看KMP算法,我们先自己想一下,BF算法究竟傻在哪里,用座山雕的话说就是:一个字,BF算法傻在累。当我们进行到这一步时,特别的突出

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                   //M字符串0  1  2  3  4  5  6                                   //指针

我们比较了好几位,我们从T[3]一直比到T[9]才发现不一样,在进行下一步的时候,

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                //M字符串0  1  2  3  4  5  6                                //指针

又从T[4]开始比较了,这就是浪费了啊,既然我们在上一个步骤已经比到T[9]了,说明T[3]~T[8]与我们的M字符串的M[0]~M[5]相同啊 ,我们一定要记住这一点
如果我们按照BF算法右移一位,对比M[0]与T[4],因为之前我们知道M[1]==T[4],所以我们直接就可以对比M字符串的M[1],M[0]与M[1]比较,找到这个规律了,我们思考在这上面能不能做点文章呢?
我们在观察一下M字符串

a  b  c  d  a  b  d                                //M字符串
0  1  2  3  4  5  6                                //指针

如果M[6]处发生了失配(不是适配),也就是说M[0]~M[5]与T字符串上的相等,按照上面的规律,M[0]!=M[1]!=M[2]!=M[3]==M[4],所以 我们就可以直接将右移到bcd 处的步骤省掉,直接匹配到M[4]处(也就是直接匹配到T对应的的字符的地方),哈哈,我们已经对BF算法进行了优化,我们再想想 我们还能再进行优化嘛?
当我们直接匹配到M[4]处时(也就是直接匹配到T对应的的字符的地方),下一步该怎么做了,是不是应该比对M[1]与M[5](也就是比对T对应的的字符的地方),如果相等,我们就继续比对下一个位置,但是如果不相等的话,那么,我们直接匹配到M[4]处 的操作也是没有用的,那么如何把这个操作也扔掉呢?
我们直接比对两位就好了嘛,在M字符串中,我们直接找zM在发生失配的位置前面,是否存在着M[0~1]也就是ab这种组合的字符组合,直接移到这里就行了嘛,我们在依次扩大一下 三位呢?四位呢?五位呢? 很多位呢?
可是我们怎么让电脑知道在发生失配之前到底应该移动M字符串几位呢?
假设我们不知道T字符串,只知道M字符串,所以我们对M字符串进行分析

a  b  c  d  a  b  d                                //M字符串
0  1  2  3  4  5  6                                //指针
  1. 如果在a的位置也就是M[0]的位置就发生失配,我们要右移一位,这个是无法避免的。我们用数组nextMove[]记录在这个位置发生失配时,应该右移几位,现在nextMove[0]=1
  2. 如果我们在b的位置,也就是M[1]的位置发生失配,因为在b之前有一个元素a,a无法与其他的位置进行比较,所以只能右移一位。nextMove[1]=1
  3. 如果我们在c的位置发生失配,也就是M[2]的地方发生失配,所以我们知道前面已经有两个元素匹配成功了,我们对比M[0]与M[1],如果相同,就右移一位,如果不相同,就右移两位。现在不相同,应该右移两位,nextMove[2]=2
  4. 如果我们在d的位置发生失配,也就是M[3]的位置发生失配,ab!=bc a!=c 也就是M[0~1]!=M[1~2],M[0]!=M[2],我们要先比较长的,在比较短的,应为如果长的能够相同,我们就不必比较短的了。此时nextMove[3]=3
  5. 如果我们在a的位置发生失配,也就是M[4]的位置发生失配,abc!=bcd ,ab!=cd ,a!=d,也就是M[0~2]!=M[1~3],M[0~1]!=M[2~3],M[0]!=M[3],所以nextMove[4]=4
  6. 如果我们在b的位置发生失配,也就是M[5]的位置发生失配,abcd!=bcda ,abc!=cda , ab!=da , a=a 也就是M[0~3]!=M[1~4] , M[0~2]!=M[2~4], M[0~1]!=M[3~4],M[0]==M[4],我们找到一个元素相同了,所以直接跳到这个元素就行了,所以nextMove[5]=4=已匹配的位数-元素相同的位数
  7. 如果我们在d的位置发生失配,也就是M[6]的位置发生失配,abcda!=bcdab, abcd!=cdab , abc!=dab , ab=ab,也就是M[0~4]!=M[1~5],M[0~3]!=M[2~5] , M[0~2]!=M[3~5],M[0~1]==M[4~5],所以直接跳到这个元素,nextMove[6]=4
1  1  2  3  4  4  4                                //nextMove[]
a  b  c  d  a  b  d                                //M字符串
0  1  2  3  4  5  6                                //指针

所以下一跳的表就出来了,当我们在M[n]处失配时,只需要取得nextMove[n]的值,将M字符串向右移nextMove[n]位 就好了。
下面我们在做一次匹配,

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串
a  b  c  d  a  b  d                                            //M字符串
0  1  2  3  4  5  6                                            //指针

第一位不匹配,查表,我们需要向右移一位,变成如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                         //M字符串0  1  2  3  4  5  6                                         //指针

还是不同,查表,向右移一位

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                      //M字符串0  1  2  3  4  5  6                                      //指针

还是第一位不同,查表,向右移一位

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                                   //M字符串0  1  2  3  4  5  6                                   //指针

我们发现到了这一步,只有M[6]不同,我们查表可知,需要右移四步,如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                       //M字符串0  1  2  3  4  5  6                       //指针

这一步我们发现在M[2]处不同,查表,需要右移两位,如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d                 //M字符串0  1  2  3  4  5  6                 //指针

在M[6]处不同,查表,需要右移四位,如下

0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 //指针
b  b  c  a  b  c  d  a  b  a  b  c  d  a  b  c  d  a  b  d  e  //T字符串a  b  c  d  a  b  d     //M字符串0  1  2  3  4  5  6     //指针

匹配成功!!!

得来 到这一步 你就已经掌握了KMP的原理了,哈哈哈哈哈。
下面是实现代码

public class Demo {public static void main(String[] args) {String text = "bbcabcdababcdabcdabde";String mode = "abcdabd";System.out.println(text.length() + "____>" + KMP(text, mode));}private static int KMP(String inText, String inMode) {char[] charText = inText.toCharArray();char[] charMode = inMode.toCharArray();if (inText.length() < inMode.length()) {return -1;}int[] arrNext = new int[inMode.length() + 1];Next(inMode, arrNext);int i, j; // i是主串游标 j是模式串游标for (i = j = 0; i < inText.length() && j < inMode.length();) {if (j == -1 || // 模式串游标已经回退到第一个位置charText[i] == charMode[j]) // 当前字符匹配成功{ // 满足以上两种情况时两个游标都要向前进一步++i;++j;} else // 匹配不成功,模式串游标回退到当前字符的arrNext值{j = arrNext[j];}}if (j >= inMode.length()) {return i - inMode.length();} else {return -1;}}private static void Next(String inMode, int[] arrNext) {char[] charMode = inMode.toCharArray();arrNext[0] = -1;for (int i = 0, j = -1; i < inMode.length();) { // i是主串游标 j是模式串的游标if (j == -1 || // 如果模式串游标已经回退到第一个字符charMode[i] == charMode[j]) // 如果匹配成功{ // 两个游标都向前走一步++i;++j;arrNext[i] = j; // 存放当前的arrNext值为此时模式串的游标值} else // 匹配不成功j就回退到上一个arrNext值{j = arrNext[j];}}}}

这篇关于手把手粗糙解析KMP算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/738501

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM