单片机04__基本定时器__毫秒微秒延时

2024-02-23 10:36

本文主要是介绍单片机04__基本定时器__毫秒微秒延时,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基本定时器__毫秒微秒延时

基本定时器介绍(STM32F40x)

        STM32F40X芯片一共包含14个定时器,这14个定时器分为3大类:

通用定时器

10个

TIM9-TIM1和TIM2-TIM5

具有基本定时器功能,

还具有输入捕获,输出比较功能

高级定时器

2个

TIM1和TIM8  

具有通用定时器和基本定时器功能,

还具有死区刹车功能。

基本定时器

2个

TIM6和TIM7 

能实现基本定时功能和DAC模块触发功能

注:若只存在6个定时器。TIM1一定为高级定时器,TIM6一定为基本定时器。其余为通用。

若存在10个定时器。TIM1&&TIM8为高级定时器,TIM6&&TIM7为基本定时器。其余为通用。

基本定时器概述STM32F40x

        基本定时器TIM6和TIM7各包含一个16位的自动重载计数器(最大计数值是0~ 2^16-1),该计数器由可编程预分频器驱动(降低计数频率,达到更长的计时要求)。

        可编程预分频器(降低计数频率): 一个脉冲计一次数;更长计时:十个脉冲计一次数。

        基本定时器不仅能用来作为简单的计数功能,还可以用来作为通用定时器的时基单元,还可以用作驱动DAC模块。

基本定时器特征STM32F40x

        ①基本定时器的计数范围是:0-65535,计数方式为递增计数。

        ②可以对基本定时器的时钟源进行分频:分频系数介于1-65536之间,分频的目的是为了满足更长的计时时间要求。

        ③可以作为DAC模块的驱动时钟

       ④在基本定时器的计数器溢出的时候,可以产生一个更新事件,并同时可以产生一个中断/DMA请求。

定时器的时钟源

如下图,如果芯片的工作频率到此时钟总线的频率的分频系数为1,则频率不变。否则X2。

如果若使用的定时器的是时钟频率不是总频就要考虑是否要X2的问题,而且X2之后的频率绝对不会超过总频。

基本定时器内部框图STM32F40x

①CK_PSC为主频,通过“预分频器”得到定时器时钟(CK_CNT)。

        预分频器:设置分频值,降低计数频率,增长计数时间。(一个脉冲计数一次,分频后:多个脉冲计数一次,时间增长)

        预分频器有影子寄存器,且影子寄存器不可设置,长期自动开启。

        内核只会读取影子寄存器的分频值。当更新事件UEV后,上层新的预分频值才会替换掉影子寄存器内的旧分频值。

②CNT COUNTER:计数器当前计数的值。计数器上溢。

        事件更新UEV:当前计数的值到达计数周期。

③自动重载寄存器:设置计数周期(计数的最大值)。

        新的自动重载寄存器的值,只能在事件更新UEV后,才会替换掉重载影子寄存器的值。

        第一次开启计数器时,有UG位手动更新重载影子寄存器的值。

        状态寄存器:产生事件更新UEV时,状态寄存器标志位变为1,只有重新清0,才可再次计数。手动设置UG位,引起UEV,也需要状态寄存器状态位清0。

定时器时基单元  (TIM6/TIM7)  

        可编程定时器的主要模块由一个 16 递增计数器及其相关的自动重载寄存器组成。计数器的时钟可通过预分频器进行分频。

        计数器、自动重载寄存器预分频器寄存器可通过软件进行读写。即使在计数器运行时也可执 行读写操作。

定时器的时基单元是定时器最基本的寄存器

        ①计数器寄存器:定时器计数工作寄存器,从0开始(不一定是0,想从多少开始则将数值直接写给计数器寄存器即可)累积计数到自动重装载数值,从而产生溢出,重新开始从初始值计数。

        ②预分频寄存器:对输入的时钟源进行分频,降低计数频率,达到更长的计时要求。

        ③自动重装载寄存器:定时器的工作周期(决定了计数器一周期内计数的次数/最大范围)。

分频器分频1->2

计数器时序图

自动重载寄存器(ARR预装载)

基本定时器相关寄存器STM32F40x

总述:

        自动重载寄存器是预装载的。每次尝试对自动重载寄存器执行读写操作时,都会访问预装载寄存器。预装载寄存器的内容既可以直接传送到影子寄存器,也可以在每次发生更新事件 UEV 时传送到影子寄存器,这取决于 TIMx_CR1 寄存器中的自动重载预装载使能位 (ARPE)。当计数器达到上溢值并且 TIMx_CR1 寄存器中的 UDIS 位为 0 时,将发送更新事件。该更新事件也可由软件产生。     

        计数器由预分频器输出 CK_CNT 提供时钟,仅当 TIMx_CR1 寄存器中的计数器启动位 (CEN)  1 时,才会启动计数器。

TIM6初始化

        开启时钟。

控制寄存器TIMx_CR1(TIM6和TIM7)

计数器 TIMx_CNT (TIM6和TIM7)

预分频器 TIMx_PSC (TIM6和TIM7)

自动重载寄存器 TIMx_ARR (TIM6和TIM7)

状态寄存器 TIMx_SR (TIM6和TIM7)

事件生成寄存器 TIMx_EGR (TIM6和TIM7)

基本定时器编程思路STM32F40x

/************************************************
函数功能:定时器TIM6初始化
函数参数:
psc:分频值
arr:自动重载值时间(s) = 计数周期(arr) / 计数频率
计数频率 = 定时器工作频率(hz 已知)/分频系数(psc)定时器工作频率:42*2MHZ == 84000000HZ
设:psc == 8400  ----->   计数频率 == 10000
设:arr == 10000   ---->   时间 == 1s
************************************************/
void TIM6_Init(uint16_t psc,uint16_t arr)
{RCC->APB1ENR |= 1<<4;	//开启时钟TIM6->CR1 |= 1<<7;	//自动重载预装载使能TIM6->CR1 &= ~(1<<3);	//循环计数TIM6->CR1 &= ~(1<<2);	//选择事件更新源TIM6->CR1 &= ~(1<<1);	//事件发生后更新影子寄存器的值//设置时基单元TIM6->CNT = 0;	//设置计数初始值TIM6->PSC = psc -1;	//设置分频值TIM6->ARR = arr;	//设置自动重载值TIM6->EGR |= 1<<0;	//手动更新UG位TIM6->SR &= ~(1<<0);	//状态寄存器,清除标志位TIM6->CR1 |= 1<<0;	//使能计数器
}

使能基本定时器时钟     

  1. 配置基本定时器的功能模式:是否开启影子寄存器、计数模式。。。。。
  2. 写计数器初始值,预分频值、自动重装载值。
  3. 如果使用中断,则开启中断   
  4. 手动产生更新事件(UG位)
  5. 清标志位
  6. 启动计数器

基本定时器实现毫秒微秒延时

公式:

时间(s) = 计数周期(arr) / 计数频率

计数频率 = 定时器工作频率(hz 已知)/分频系数(psc)

TIM7挂载在APB1(42MHZ)线上,不为时钟总频,所以定时器工作频率:42*2*1000000HZ

定时器工作频率:42*2MHZ == 84000000HZ

设:psc == 8400  ----->   计数频率 == 10000

设:arr == 10000   ---->   时间 == 1s

毫秒:

设:arr== 10   ------>   时间 == 1s/1000 == 1ms

微秒:

设:psc==84;arr==1   ------>   时间== 1ms/1000  == 1us

举例:

//毫米延时
void delay_ms(uint16_t num)
{uint16_t i = 1;//10000 -> 1s   10 -> 1msTIM7_Init(8400,10);while(1){if(TIM7->SR & 1<<0){TIM7->SR &= ~(1<<0);i++;}if(i == num)break;}
}
//微秒延时
void delay_us(uint16_t num)
{uint16_t i = 1;//10000 -> 1s   10 -> 1ms   TIM7_Init(84,1);while(1){if(TIM7->SR & 1<<0){TIM7->SR &= ~(1<<0);i++;}if(i == num)break;}
}

这篇关于单片机04__基本定时器__毫秒微秒延时的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/738333

相关文章

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

取得 Git 仓库 —— Git 学习笔记 04

取得 Git 仓库 —— Git 学习笔记 04 我认为, Git 的学习分为两大块:一是工作区、索引、本地版本库之间的交互;二是本地版本库和远程版本库之间的交互。第一块是基础,第二块是难点。 下面,我们就围绕着第一部分内容来学习,先不考虑远程仓库,只考虑本地仓库。 怎样取得项目的 Git 仓库? 有两种取得 Git 项目仓库的方法。第一种是在本地创建一个新的仓库,第二种是把其他地方的某个

C 语言的基本数据类型

C 语言的基本数据类型 注:本文面向 C 语言初学者,如果你是熟手,那就不用看了。 有人问我,char、short、int、long、float、double 等这些关键字到底是什么意思,如果说他们是数据类型的话,那么为啥有这么多数据类型呢? 如果写了一句: int a; 那么执行的时候在内存中会有什么变化呢? 橡皮泥大家都玩过吧,一般你买橡皮泥的时候,店家会赠送一些模板。 上

FreeRTOS-基本介绍和移植STM32

FreeRTOS-基本介绍和STM32移植 一、裸机开发和操作系统开发介绍二、任务调度和任务状态介绍2.1 任务调度2.1.1 抢占式调度2.1.2 时间片调度 2.2 任务状态 三、FreeRTOS源码和移植STM323.1 FreeRTOS源码3.2 FreeRTOS移植STM323.2.1 代码移植3.2.2 时钟中断配置 一、裸机开发和操作系统开发介绍 裸机:前后台系

Java 多线程的基本方式

Java 多线程的基本方式 基础实现两种方式: 通过实现Callable 接口方式(可得到返回值):

单片机毕业设计基于单片机的智能门禁系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍程序代码部分参考 设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订

Java基础回顾系列-第一天-基本语法

基本语法 Java基础回顾系列-第一天-基本语法基础常识人机交互方式常用的DOS命令什么是计算机语言(编程语言) Java语言简介Java程序运行机制Java虚拟机(Java Virtual Machine)垃圾收集机制(Garbage Collection) Java语言的特点面向对象健壮性跨平台性 编写第一个Java程序什么是JDK, JRE下载及安装 JDK配置环境变量 pathHe

浙大数据结构:04-树7 二叉搜索树的操作集

这道题答案都在PPT上,所以先学会再写的话并不难。 1、BinTree Insert( BinTree BST, ElementType X ) 递归实现,小就进左子树,大就进右子树。 为空就新建结点插入。 BinTree Insert( BinTree BST, ElementType X ){if(!BST){BST=(BinTree)malloc(sizeof(struct TNo