代码随想录算法训练营第二十五天|Leetcode216 组合总和III、Leetcode17 电话号码的字母组合

本文主要是介绍代码随想录算法训练营第二十五天|Leetcode216 组合总和III、Leetcode17 电话号码的字母组合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码随想录算法训练营第二十五天|Leetcode216 组合总和III、Leetcode17 电话号码的字母组合

  • ● Leetcode216.组合总和III
    • ● 解题思路
    • ● 代码实现
  • ● Leetcode17 电话号码的字母组合
    • ● 解题思路
    • ● 代码实现

● Leetcode216.组合总和III

题目链接:Leetcode216.组合总和III
视频讲解:代码随想录|组合总和III
题目描述:找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:
· 只使用数字1到9
· 每个数字 最多使用一次
返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。

示例 1:
输入: k = 3, n = 7
输出: [[1,2,4]]
解释:
1 + 2 + 4 = 7
没有其他符合的组合了。
示例 2:
输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
解释:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
没有其他符合的组合了。
示例 3:
输入: k = 4, n = 1
输出: []
解释: 不存在有效的组合。
在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。

提示:
· 2 <= k <= 9
· 1 <= n <= 60

● 解题思路

在leetcode77 组合的基础上,组合总和III增加了一个条件是:在[1, 9]的范围内寻找k个和为n的组合。
我们同样可以将本题抽象为树形结构,树的深度取决与组合元素个数限制,宽度取决与元素个数;为了去掉重复组合,当第一层递归取了元素i,则可与该元素匹配的仅为[i + 1, 9],如下图:
树形结构
按照回溯三部曲:
(1)确定回溯函数参数和返回值:
回溯函数直接在全局变量result和path上进行修改,因此对于回溯函数不需要任何返回值;同时,在每层递归的过程,需要传入目标和targetSum确定是否满足解题条件,当前元素总和sumtargetSum比较,元素遍历开始位置startIndex以及组合元素个数上限k
(2)确定回溯函数的终止条件:
相比对组合,本题多加了一条限制条件targetSum,因此对于终止条件(回收结果的条件)需要在叶子结点的基础上限制sum与targetSum大小比较
(3)确定回溯函数单层搜索过程:
i.递归- 遍历元素并插入到当前path容器中,并对sum进行增加并乡下递归:该过程模拟从[1, 9]中取k个元素,并记录元素总和与targetSum比较;
ii.回溯- sum减去插入的新元素并在path中弹出:该过程模拟回溯过程。


同样,本题可以进行剪枝操作:
(1)对于解题条件targetSum,当sum已经大于targetSum时,其后面元素再加进path只可能更大,使得条件越来越远,因此该过程可以进行剪枝;
(2)对于单层遍历范围,目前元素个数为path.size(),组合剩余需要元素个数为k - path.size(),当i遍历到9 - (k - path.size) + 1时,后面的元素在个数上无法满足k个元素的需求,因此可以进行剪枝。

● 代码实现

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(int targetSum, int sum, int k, int startIndex){//终止条件if(path.size() == k){if(sum == targetSum){result.push_back(path);return;}}for(int i = startIndex; i <= 9; i++){sum += i;path.push_back(i);backtracking(targetSum, sum, k, i + 1);sum -= i;path.pop_back();}}
public:vector<vector<int>> combinationSum3(int k, int n) {backtracking(n, 0, k, 1);return result;}
};

进行剪枝操作之后的代码为:

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(int targetSum, int sum, int k, int startIndex){if(sum > targetSum){return;}if(path.size() == k){if(sum == targetSum){result.push_back(path);return;}}for(int i = startIndex; i <= (9 - (k - path.size()) + 1); i++){sum += i;path.push_back(i);backtracking(targetSum, sum, k, i + 1);sum -= i;path.pop_back();}}
public:vector<vector<int>> combinationSum3(int k, int n) {backtracking(n, 0, k, 1);return result;}
};

● Leetcode17 电话号码的字母组合

题目链接:Leetcode17 电话号码的字母组合
视频讲解:代码随想录|电话号码的字母组合
题目描述:给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。
给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。
电话按键

示例 1:
输入:digits = “23”
输出:[“ad”,“ae”,“af”,“bd”,“be”,“bf”,“cd”,“ce”,“cf”]
示例 2:
输入:digits = “”
输出:[]
示例 3:
输入:digits = “2”
输出:[“a”,“b”,“c”]

提示:
· 0 <= digits.length <= 4
· digits[i] 是范围 [‘2’, ‘9’] 的一个数字。

● 解题思路

对于电话号码的字母组合,就是依次地从每一个字符串中取一个字符进行配对,也能转换为相对应的树形结构,递归深度取决于输入数字的个数,宽度取决于第一个字符串的大小。
按照回溯三部曲:
(1)确定回溯函数参数和返回值:
我们需要将字符串与输入的数字字符串进行一个映射,因为是对全局变量进行修改,因此该函数不需要任何返回值,参数需要传入digits来知道应该取哪几个数字的映射,index则是标记我们当前遍历到第几个数字字符;
(2)确定回溯函数终止条件:
当递归到叶子结点时,我们就需要对当前结果字符串进行回收,也就是我们遍历完最后一个数字字符对应的映射字符集,即当index = digits.size()
(3)确定确定回溯函数单层搜索过程:
在确定单层搜索过程之前,我们需要两步prerequisites来帮助我们在之后进行搜索:
(1)因为我们传入的digits是数字字符串,因此我们需要在每一层递归中将当前遍历的字符转换为数字类型;
(2)得到对应的数字之后,我们就需要从映射关系中取得相应的字符集进行搜索匹配。

在以上两步的基础上,我们分别用digit来保存当前字符对应的数字,letters保存对应数字取得的字符集映射。
在每一层递归循环中,我们将取得的字符逐个加入当前字符结果s中,随后进行下一次递归;
因为递归和回溯必须相匹配,所以我们在递归结束之后,从s中弹出当前遍历字符,然后进行之后的递归操作。

● 代码实现

class Solution {
private:const string lettermap[10] = {"", //0"", //1"abc", //2"def", //3"ghi", //4"jkl", //5"mno", //6"pqrs", //7"tuv", //8"wxyz" //9};string s; //存储组合当前字符串vector<string> result; //存储结果集void backtracking(const string& digits, int index){//终止条件if(index == digits.size()){result.push_back(s);return;}int digit = digits[index] - '0';//将字符转换为数字string letters = lettermap[digit];//取字符集映射for(int i = 0; i < letters.size(); i++){s.push_back(letters[i]);backtracking(digits, index + 1);s.pop_back();}}
public:vector<string> letterCombinations(string digits) {if(digits.size() == 0) return result;backtracking(digits, 0);return result;}
};

这篇关于代码随想录算法训练营第二十五天|Leetcode216 组合总和III、Leetcode17 电话号码的字母组合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/737093

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

轻松掌握python的dataclass让你的代码更简洁优雅

《轻松掌握python的dataclass让你的代码更简洁优雅》本文总结了几个我在使用Python的dataclass时常用的技巧,dataclass装饰器可以帮助我们简化数据类的定义过程,包括设置默... 目录1. 传统的类定义方式2. dataclass装饰器定义类2.1. 默认值2.2. 隐藏敏感信息

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

IDEA常用插件之代码扫描SonarLint详解

《IDEA常用插件之代码扫描SonarLint详解》SonarLint是一款用于代码扫描的插件,可以帮助查找隐藏的bug,下载并安装插件后,右键点击项目并选择“Analyze”、“Analyzewit... 目录SonajavascriptrLint 查找隐藏的bug下载安装插件扫描代码查看结果总结Sona

Python开发围棋游戏的实例代码(实现全部功能)

《Python开发围棋游戏的实例代码(实现全部功能)》围棋是一种古老而复杂的策略棋类游戏,起源于中国,已有超过2500年的历史,本文介绍了如何用Python开发一个简单的围棋游戏,实例代码涵盖了游戏的... 目录1. 围棋游戏概述1.1 游戏规则1.2 游戏设计思路2. 环境准备3. 创建棋盘3.1 棋盘类

Java实现批量化操作Excel文件的示例代码

《Java实现批量化操作Excel文件的示例代码》在操作Excel的场景中,通常会有一些针对Excel的批量操作,这篇文章主要为大家详细介绍了如何使用GcExcel实现批量化操作Excel,感兴趣的可... 目录前言 | 问题背景什么是GcExcel场景1 批量导入Excel文件,并读取特定区域的数据场景2