本文主要是介绍Opencv 基于C++识别绿灯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Opencv 基于C++识别绿灯
**
基本思路
1.对inRange图像 获取绿色像素点区域
2.对图像二值化处理
3.框选ROI区域
整体代码:
#include <opencv4/opencv2/opencv.hpp>
#include <opencv4/opencv2/highgui/highgui.hpp>
#include <opencv4/opencv2/imgproc/imgproc.hpp>
#include<iostream>
#include <time.h>using namespace cv;
using namespace std;clock_t start,finish;
Mat srcImage;
vector<Vec3f>circles;
Mat templateImage;
Mat resultImage;//void processFrame(Mat& img, Rect& rect);//绘制外接矩形
double area=0.0;void processFrame(Mat & img, Rect & rect)
{//寻找外接轮廓vector<vector<Point>>contours;vector<Vec4i>hierarchy;findContours(img, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(-1, -1));if (contours.size() > 0) {for (size_t i = 0; i < contours.size(); i++){double contours_Area = contourArea(contours[static_cast<int>(i)]);//面积rect = boundingRect(contours[static_cast<int>(i)]);//外接矩形if (contours_Area > area){area = contours_Area;}}}else{rect.x = rect.y = rect.width = rect.height = 0;}
}int main(int argc, char** argv)
{Rect roi;//存储最大外接矩形的数据VideoCapture capture;capture.open(2);if (!capture.isOpened()){cout << "图像读取错误!~" << endl;return -1;}Mat frame,dst;int Number_of_successful=-1;int number=-1;Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));Mat kernel_dilite = getStructuringElement(MORPH_RECT, Size(7, 7), Point(-1, -1));while (capture.read(frame)){start = clock();//筛选出绿色inRange(frame, Scalar(0, 127, 0), Scalar(120, 255, 120), dst);//开操作去噪点morphologyEx(dst, dst, MORPH_OPEN, kernel, Point(-1, -1), 1);//膨胀操作把绿灯具体化的显示出来dilate(dst, dst, kernel_dilite, Point(-1, -1), 2);imshow("output video", dst);processFrame(dst, roi);rectangle(frame, roi, Scalar(0, 0, 255), 3, 8, 0);if(area>=800) //根据距离调参数 (800){cout<<"绿灯完成"<<endl;cout<<"开始启动"<<endl;}finish= clock();double Frame1 = 1000/(double(finish-start)/CLOCKS_PER_SEC*1000);// cout<<"算法进行时间为:"<<time<<endl;// cout<<"视觉识别帧率为:"<<Frame<<endl;std::string str = std::to_string(Frame1);string Frame_name = "FPS:";Frame_name +=str;//cout<<"视觉识别帧率为:"<<Frame_name<<endl;putText(frame,Frame_name,Point(0,50),FONT_HERSHEY_COMPLEX,1,Scalar(0,0,255));imshow("input video", frame);char c = waitKey(50);if (c == 27){break;}}capture.release();waitKey(0);return 0;}
这篇关于Opencv 基于C++识别绿灯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!