垃圾桶的空闲爆满情况/利用率分析

2024-02-21 18:38

本文主要是介绍垃圾桶的空闲爆满情况/利用率分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

满载:
select m.DEVICECODE,m.SYS_KEY,m.GARDENNAME,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT from  
(select DEVICECODE,SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) m 
where m.WEIGHT BETWEEN 23.2265 and 27.29 order by m.DEVICECODE,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT asc;空闲:
select m.DEVICECODE,m.SYS_KEY,m.GARDENNAME,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT from 
(select DEVICECODE,SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) m 
where m.WEIGHT BETWEEN 0.2 and 13.745 order by m.DEVICECODE,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT asc;select m.DEVICECODE,m.SYS_KEY,m.GARDENNAME,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT,
row_number() over(partition by m.GARDENNAME,m.THROWTIME order by m.WEIGHT desc) from 
(select DEVICECODE,SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) m 
order by m.DEVICECODE,m.SYS_KEY,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT asc;select m.SYS_KEY,m.GARDENNAME,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT,
row_number() over(partition by m.GARDENNAME,m.THROWTIME order by m.WEIGHT desc) from 
(select SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) m 
order by m.GARDENNAME,m.GARBAGETYPE,m.SYS_KEY,m.THROWTIME,m.WEIGHT asc;按照垃圾分类求重量最大值、最小值、空闲、满载:
select p.GARBAGETYPE,max(p.WEIGHT) as zd,min(p.WEIGHT) as zx,((max(p.WEIGHT)+min(p.WEIGHT))*0.5) as kx,(0.85*max(p.WEIGHT)+0.15*min(p.WEIGHT)) as mz from 
(select SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) p
GROUP BY p.GARBAGETYPE;按照垃圾分类求重量满载:
select m.DEVICECODE,m.SYS_KEY,m.GARDENNAME,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT from  
(select DEVICECODE,SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) m,
(select p.GARBAGETYPE,max(p.WEIGHT) as zd,min(p.WEIGHT) as zx,((max(p.WEIGHT)+min(p.WEIGHT))*0.5) as kx,
(0.85*max(p.WEIGHT)+0.15*min(p.WEIGHT)) as mz from 
(select SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) p
GROUP BY p.GARBAGETYPE) n  
where m.GARBAGETYPE = n.GARBAGETYPE and m.WEIGHT BETWEEN n.mz and n.zd order by m.DEVICECODE,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT asc;按照垃圾分类求重量空闲:
select m.DEVICECODE,m.SYS_KEY,m.GARDENNAME,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT from  
(select DEVICECODE,SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) m,
(select p.GARBAGETYPE,max(p.WEIGHT) as zd,min(p.WEIGHT) as zx,((max(p.WEIGHT)+min(p.WEIGHT))*0.5) as kx,
(0.85*max(p.WEIGHT)+0.15*min(p.WEIGHT)) as mz from 
(select SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) p
GROUP BY p.GARBAGETYPE) n  
where m.GARBAGETYPE = n.GARBAGETYPE and m.WEIGHT BETWEEN n.zx and n.kx order by m.DEVICECODE,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT asc;求满载次数:
select q.DEVICECODE,q.GARDENNAME,q.GARBAGETYPE,q.THROWTIME,count(*) as mz_cs from 
(select m.DEVICECODE,m.SYS_KEY,m.GARDENNAME,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT from  
(select DEVICECODE,SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) m,
(select p.GARBAGETYPE,max(p.WEIGHT) as zd,min(p.WEIGHT) as zx,((max(p.WEIGHT)+min(p.WEIGHT))*0.5) as kx,
(0.85*max(p.WEIGHT)+0.15*min(p.WEIGHT)) as mz from 
(select SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) p
GROUP BY p.GARBAGETYPE) n  
where m.GARBAGETYPE = n.GARBAGETYPE and m.WEIGHT BETWEEN n.mz and n.zd order by m.DEVICECODE,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT asc) q 
GROUP BY q.DEVICECODE,q.GARDENNAME,q.GARBAGETYPE,q.THROWTIME order by q.DEVICECODE;
求空闲次数:
select q.DEVICECODE,q.GARDENNAME,q.GARBAGETYPE,q.THROWTIME,count(*) as kx_cs from 
(select m.DEVICECODE,m.SYS_KEY,m.GARDENNAME,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT from  
(select DEVICECODE,SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) m,
(select p.GARBAGETYPE,max(p.WEIGHT) as zd,min(p.WEIGHT) as zx,((max(p.WEIGHT)+min(p.WEIGHT))*0.5) as kx,
(0.85*max(p.WEIGHT)+0.15*min(p.WEIGHT)) as mz from 
(select SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) p
GROUP BY p.GARBAGETYPE) n  
where m.GARBAGETYPE = n.GARBAGETYPE and m.WEIGHT BETWEEN n.zx and n.kx order by m.DEVICECODE,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT asc) q
GROUP BY q.DEVICECODE,q.GARDENNAME,q.GARBAGETYPE,q.THROWTIME order by q.DEVICECODE求一个月内空闲次数:
select q.DEVICECODE,q.GARDENNAME,q.GARBAGETYPE,q.THROWTIME,count(*) as kx_cs from 
(select m.DEVICECODE,m.SYS_KEY,m.GARDENNAME,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT from  
(select DEVICECODE,SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) m,
(select p.GARBAGETYPE,max(p.WEIGHT) as zd,min(p.WEIGHT) as zx,((max(p.WEIGHT)+min(p.WEIGHT))*0.5) as kx,
(0.85*max(p.WEIGHT)+0.15*min(p.WEIGHT)) as mz from 
(select SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) p
GROUP BY p.GARBAGETYPE) n  
where m.GARBAGETYPE = n.GARBAGETYPE and m.WEIGHT BETWEEN n.zx and n.kx order by m.DEVICECODE,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT asc) q
GROUP BY q.DEVICECODE,q.GARDENNAME,q.GARBAGETYPE,q.THROWTIME having substr(q.THROWTIME,1,7) = substr(TO_CHAR(sysdate,'yyyy-mm-dd hh24:mi:ss'),1,7);求一周内空闲次数:
select q.DEVICECODE,q.GARDENNAME,q.GARBAGETYPE,q.THROWTIME,count(*) as kx_cs from 
(select m.DEVICECODE,m.SYS_KEY,m.GARDENNAME,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT from  
(select DEVICECODE,SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) m,
(select p.GARBAGETYPE,max(p.WEIGHT) as zd,min(p.WEIGHT) as zx,((max(p.WEIGHT)+min(p.WEIGHT))*0.5) as kx,
(0.85*max(p.WEIGHT)+0.15*min(p.WEIGHT)) as mz from 
(select SYS_KEY,GARDENNAME,GARBAGETYPE,THROWTIME,to_number(WEIGHT) as WEIGHT from TFJL_COPY) p
GROUP BY p.GARBAGETYPE) n  
where m.GARBAGETYPE = n.GARBAGETYPE and m.WEIGHT BETWEEN n.zx and n.kx order by m.DEVICECODE,m.GARBAGETYPE,m.THROWTIME,m.WEIGHT asc) q
GROUP BY q.DEVICECODE,q.GARDENNAME,q.GARBAGETYPE,q.THROWTIME 
having trunc(TO_DATE(THROWTIME, 'yyyy-mm-dd hh24:mi:ss'))<=trunc(Sysdate) and trunc(TO_DATE(THROWTIME, 'yyyy-mm-dd hh24:mi:ss'))>= trunc(sysdate-7);求上一周的数据
Select * From TFJL_COPY a Where trunc(TO_DATE(THROWTIME, 'yyyy-mm-dd hh24:mi:ss'))>=trunc(Sysdate,'d')
AND trunc(TO_DATE(THROWTIME, 'yyyy-mm-dd hh24:mi:ss'))<= Next_day(trunc(sysdate,'d'),7);求当前日期前七天的数据
Select * From TFJL_COPY a Where trunc(TO_DATE(THROWTIME, 'yyyy-mm-dd hh24:mi:ss'))<=trunc(Sysdate) 
and trunc(TO_DATE(THROWTIME, 'yyyy-mm-dd hh24:mi:ss'))>= trunc(sysdate-7);删除多字段重复数据
DELETE FROM TFJL_COPY_COPY a
WHERE (a.DEVICECODE, a.THROWTIME,a.GARBAGETYPE,a.WEIGHT) IN 
(SELECT DEVICECODE,THROWTIME,GARBAGETYPE,WEIGHT FROM TFJL_COPY_COPY GROUP BY DEVICECODE,THROWTIME,GARBAGETYPE,WEIGHT HAVING COUNT(*) > 1)
AND ROWID NOT IN (SELECT MIN(ROWID) FROM TFJL_COPY_COPY GROUP BY DEVICECODE,THROWTIME,GARBAGETYPE,WEIGHT HAVING COUNT(*) > 1);查找多字段重复数据
SELECT * FROM TFJL_COPY_COPY a WHERE (a.DEVICECODE, a.THROWTIME,a.GARBAGETYPE,a.WEIGHT) IN (SELECT DEVICECODE,THROWTIME,GARBAGETYPE,WEIGHT
FROM TFJL_COPY_COPY GROUP BY DEVICECODE,THROWTIME,GARBAGETYPE,WEIGHT HAVING COUNT(*) > 1);

 

这篇关于垃圾桶的空闲爆满情况/利用率分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/732700

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb