海拔高度对电子产品性能的影响及要求

2024-02-21 17:32

本文主要是介绍海拔高度对电子产品性能的影响及要求,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

电子产品主要组成模组包括CPU、RAM、ROM、时钟、AC/DC电源、PCB、外围电路器件电容/电阻/电感、结构件。海拔高度发生变化,温度、湿度、空气密度、大气压强也随之变化,那么海拔的变化对电子产品会产生怎样的影响呢?

查看下述两个表数据,海拔每升高1km,相对大气压力约降低12%,空气密度约降低10%,绝对湿度随之降低,最高温度降低5 ℃,平均温度降低5 ℃。那我们可以从大气压强、湿度、温度三个维度评估海拔升高对电子产品工作状态、抗扰度、生命周期等要素的影响。

*注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11 g/m3。

1、环温下降对机器启动的影响

温度过低可能致使机器不能启动。原因是低温影响自由电子数量及电子运动速率,进一步导致部分器件无法正常工作。故在实际应用中元器件按照操作温度分军规(-55℃~+85℃)、工规(-25℃~+70℃)、商规(0℃~+60℃)三类。器件启动异常的临界温度点可以称为极限温度,一般低于或高于操作临界值。

因为PNP、NPN等是元器件(芯片)的基本组成元素,故我们以升温对三极管电流影响曲线图为例分析,可明确温度升高会使自由电子数量增加且运动速率加快,电流增大。温度降低则反之,则当自由电子数量无法满足器件开始工作临界条件时,机器无法启动。

2、空气密度下降对产品散热性能影响

热量传递有三种方式:热辐射、热传导、对流传热。对于计算机类产品,三种散热方式一般都会交叠使用,如:

1)热辐射:机箱或器件作为热源向空气辐射电磁波,向空气传递热量,器件辐射的热量开始阶段依旧存在于机箱内;

2)热传导:散热片/散热器被动散热,器件表面热量通过接触面传导给散热器,散热器热辐射到空气中;

3)热对流:自然风流或风扇主导的强制空气对流,机箱内热量通过空气对流传递到机箱外空气中;

我们可发现无论是热辐射还是热传导,如果热量是传递到机箱内空气中,最终需要通过热对流传递到空气外,而热对流需要空气介质,就像真空中热量只能通过热辐射传递(月球有热源时最高温127℃,无热源最低温-183℃),空气密度下降将导致同功耗情况下,对产品散热效率要求更高,继而对散热设计提出新要求。

下述分别是海平面、高空情况下的传热系数、芯片测温点温度值对比:

如上图,假如CPU的温度在海平面的温度为68.3度,环境温度为35度, 可以推导出在海拔1500m的温度为(68.3-35)x(1+0.00009x1500) +35 =72.8度。

3、空气密度下降对产品绝缘性能影响

EMC(Electro Magnetic Compatibility)绝缘测试有介质强度(AC/DC,施加于回路与回路之间或回路与GND之间)、绝缘电阻(直流,施加于回路与回路之间或回路与GND之间),以这两项测试为基准分析随空气密度下降,产品绝缘性能的影响。

实验中产品测试绝缘不合格的直接表现是漏电流超过标准要求,导致漏电流超标的原因有:爬电距离不足导致电弧放电短路、器件耐压性能不足导致被击穿。

如下图,蓝色虚线表示PCB介质导电最短路径,红色虚线表示电弧爬电最短路径,对于设计定型的产品,由于其电气间隙已经固定,随空气压力的降低,其击穿电压也下降。空气压力或空气密度的降低使空气介质灭弧的开关电器灭弧性能降低,通断能力下降和电寿命缩短:a)直流电弧的燃弧时间随海拔升高或气压降低而延长;b)直流与交流电弧的飞弧距离随海拔升高或气压降低而增加。

故随海拔升高,安全间隙需要增大,参考标准UL/EN 60950-1,以2000m海拔为基准,系数/安全距离与海拔/气压之间关系如下表

4、大气压降低对电容器影响

电容器按照不同的功用有十多种分类,其中按电解质分类:有机介质电容器、无机介质电容器、电解电容器、电热电容器和空气介质电容器等。特别对于液态电解质电容器、空气介质电容器,当海拔升高,气压降低:

1)电解电容的内外部的压力差会变大,放电电压降低,导致电容器内部的局部放电问题;

2)昼夜温差会变大,同时内部外部的压力差也变大,对密封性及结构强度要求更高,否则可能鼓包;

 

本意想尽量从原理上理解为什么气压下降会导致上述4个问题,比如分子运动、电子运动以及现象产生原因。此文仅分析了影响,未给出对应解决方案。

 

这篇关于海拔高度对电子产品性能的影响及要求的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/732544

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字

mysql线上查询之前要性能调优的技巧及示例

《mysql线上查询之前要性能调优的技巧及示例》文章介绍了查询优化的几种方法,包括使用索引、避免不必要的列和行、有效的JOIN策略、子查询和派生表的优化、查询提示和优化器提示等,这些方法可以帮助提高数... 目录避免不必要的列和行使用有效的JOIN策略使用子查询和派生表时要小心使用查询提示和优化器提示其他常

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

SpringBoot中的404错误:原因、影响及解决策略

《SpringBoot中的404错误:原因、影响及解决策略》本文详细介绍了SpringBoot中404错误的出现原因、影响以及处理策略,404错误常见于URL路径错误、控制器配置问题、静态资源配置错误... 目录Spring Boot中的404错误:原因、影响及处理策略404错误的出现原因1. URL路径错

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6