【Langchain】+ 【baichuan】实现领域知识库【RAG】问答系统

2024-02-21 02:36

本文主要是介绍【Langchain】+ 【baichuan】实现领域知识库【RAG】问答系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本项目使用Langchainbaichuan 大模型, 结合领域百科词条数据(用xlsx保存),简单地实现了领域百科问答实现。

from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain_community.embeddings import OpenAIEmbeddings, SentenceTransformerEmbeddings
from langchain_community.vectorstores import Chroma, FAISS
from langchain_community.llms import OpenAI, Baichuan
from langchain_community.chat_models import ChatOpenAI, ChatBaichuan
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
#import langchain_community import chat_models
#print(chat_models.__all__)import streamlit as st
import pandas as pd
import os
import warnings
import time
warnings.filterwarnings('ignore')# 对存储了领域百科词条的xlsx文件进行解析
def get_xlsx_text(xlsx_file):df = pd.read_excel(xlsx_file, engine='openpyxl')text = ""for index, row in df.iterrows():text += row['title'].replace('\n', '')text += row['content'].replace('\n', '')text += '\n\n'return text# Splits a given text into smaller chunks based on specified conditions
def get_text_chunks(text):text_splitter = RecursiveCharacterTextSplitter(separators="\n\n",chunk_size=1000,chunk_overlap=200,length_function=len)chunks = text_splitter.split_text(text)return chunks# 对切分的文本块构建编码向量并存储到FASISS
# Generates embeddings for given text chunks and creates a vector store using FAISS
def get_vectorstore(text_chunks):# embeddings = OpenAIEmbeddings() #有经济条件的可以使用 opanaiembendingembeddings = SentenceTransformerEmbeddings(model_name='all-MiniLM-L6-v2')vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)return vectorstore
# Initializes a conversation chain with a given vector store# 对切分的文本块构建编码向量并存储到Chroma
# Generates embeddings for given text chunks and creates a vector store using Chroma
def get_vectorstore_chroma(text_chunks):# embeddings = OpenAIEmbeddings()embeddings = SentenceTransformerEmbeddings(model_name='all-MiniLM-L6-v2')vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings)return vectorstoredef get_conversation_chain_baichuan(vectorstore):memory = ConversationBufferWindowMemory(memory_key='chat_history', return_message=True) # 设置记忆存储器conversation_chain = ConversationalRetrievalChain.from_llm(llm=Baichuan(temperature=temperature_input, model_name=model_select),retriever=vectorstore.as_retriever(),get_chat_history=lambda h: h,memory=memory)return conversation_chainos.environ["http_proxy"] = "http://127.0.0.1:7890"
os.environ["https_proxy"] = "http://127.0.0.1:7890"# langchain 可以通过设置环境变量来设置参数
os.environ['BAICHUAN_API_KEY'] = 'sk-88888888888888888888888888888888'
temperature_input = 0.7
model_select = 'Baichuan2-Turbo-192K'
raw_text = get_xlsx_text('领域文件/twiki百科问答.xlsx')text_chunks = get_text_chunks(raw_text)
vectorstore = get_vectorstore_chroma(text_chunks)
# Create conversation chain
qa = get_conversation_chain_baichuan(vectorstore)
questions = ["什么是森林经营项目?","风电项目开发过程中需要的主要资料?","什么是ESG"
]
for question in questions:result = qa(question)print(f"**Question**: {question} \n")print(f"**Answer__**: {result['answer']} \n")

这篇关于【Langchain】+ 【baichuan】实现领域知识库【RAG】问答系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/730322

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求