2020 ||门控通道注意力机制Gated Channel Transformation

2024-02-20 18:30

本文主要是介绍2020 ||门控通道注意力机制Gated Channel Transformation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Gated Channel Transformation for Visual Recognition

论文链接: https://arxiv.org/abs/1909.11519

代码地址: https://github.com/z-x-yang/GCT

CSDN(这个是详细的解说):https://blog.csdn.net/weixin_47196664/article/details/108414207?ops_request_misc=&request_id=&biz_id=102&utm_term=%E9%97%A8%E6%8E%A7%E6%B3%A8%E6%84%8F%E5%8A%9B&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-108414207.nonecase

我这篇精简了一点,附上了更详细的实现代码。

GCT更倾向于鼓励浅层次的合作,但竞争在更深层次得到增强。一般来说,浅层学习低级属性用来捕获一般特征,比如纹理。在更深的层次中,高级特征更具判别性而且与任务息息相关。我们的实验表明,GCT是一种简单有效的通道间关系建模体系结构。它显著提高了深度卷积网络在视觉识别任务和数据集上的泛化能力(亲测确实有效牛牪犇)

论文经过研究发现,把该门控机制加在Conv层的前面,训练出来的效果最好。
在这里插入图片描述
在这里插入图片描述

论文中引入了三个参数alpha,beita,gama来对通信道进行评价。
其中, alpha,beita,gama表示可训练参数, alpha有助于嵌入输出的自适应性, beita跟gama用于控制激活门限,它们决定了GCT在每个通道的行为表现。上面是论文的图,下面是我自己画出来的,你们可以先把论文的图看个大概,然后在看看我的/doge(虽然感觉我的画的不太好,仅供参考)。
在这里插入图片描述

GCT:

分成三个部分

1. Global Context Embedding

大感受野有助于避免局部混淆。因此,作者首先设计了一种全局上线嵌入模块用于每个通道的全局上下文信息汇聚。
在这里插入图片描述

2. Channel Normalization

规范化可以通过少量计算资源构建神经元间的竞争关系,类似于LRN,作者采用 进行跨通道特征规范化,即通道规范化,此时定义如下:
在这里插入图片描述
在这里插入图片描述

文章中提到,“根号C”,但是在代码中我并没有看到关于根号C的代码(希望有了解的童鞋可以告诉我)3. Gating Adaptation
作者在前述基础上添加了门限机制,通过引入门线机制,GCT可以有助于促进神经元的竞争or协同关系。定义如下:

3. Gating Adaptation作者在前述基础上添加了门限机制,通过引入门线机制,GCT可以有助于促进神经元的竞争or协同关系。定义如下:

在这里插入图片描述

4.实现:

类似于BatchNorm,作者提出对深度网络中的所有卷积层都添加GCT。通过尝试,作者发现:将GCT置于Conv之前效果更佳。下面给出了Pytorch版的GCT实现:

class GCT(nn.Module):def __init__(self, num_channels, epsilon=1e-5, mode='l2', after_relu=False):super(GCT, self).__init__()self.alpha = nn.Parameter(torch.ones(1, num_channels, 1, 1))self.gamma = nn.Parameter(torch.zeros(1, num_channels, 1, 1))self.beta = nn.Parameter(torch.zeros(1, num_channels, 1, 1))self.epsilon = epsilonself.mode = modeself.after_relu = after_reludef forward(self, x):if self.mode == 'l2':embedding = (x.pow(2).sum((2, 3), keepdim=True) +self.epsilon).pow(0.5) * self.alphanorm = self.gamma / \(embedding.pow(2).mean(dim=1, keepdim=True) + self.epsilon).pow(0.5)elif self.mode == 'l1':if not self.after_relu:_x = torch.abs(x)else:_x = xembedding = _x.sum((2, 3), keepdim=True) * self.alphanorm = self.gamma / \(torch.abs(embedding).mean(dim=1, keepdim=True) + self.epsilon)gate = 1. + torch.tanh(embedding * norm + self.beta)return x * gate

然后把GCT门控添加Conv层前(效果最好)

class REBNCONV(nn.Module):def __init__(self, in_ch=3, out_ch=3, dirate=1):super(REBNCONV, self).__init__()self.gate = GCT(in_ch)self.conv_s1 = nn.Conv2d(in_ch, out_ch, 3, padding=1 * dirate, dilation=1 * dirate)self.bn_s1 = BatchNorm2d_no_b(out_ch)self.relu_s1 = nn.ReLU(inplace=True)def forward(self, x):hx = xhx = self.gate(hx)hx = self.conv_s1(hx)hx = self.bn_s1(hx)xout = self.relu_s1(hx)return xout

这里建议先冻结原来的模型然后再训练GCT,最后解冻,再进行微调…
可以在我的博客中找到相关:https://blog.csdn.net/qq_51302564/article/details/115636452(四.小问题)

这篇关于2020 ||门控通道注意力机制Gated Channel Transformation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/729134

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

【Tools】大模型中的注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 在大模型中,注意力机制是一种重要的技术,它被广泛应用于自然语言处理领域,特别是在机器翻译和语言模型中。 注意力机制的基本思想是通过计算输入序列中各个位置的权重,以确

FreeRTOS内部机制学习03(事件组内部机制)

文章目录 事件组使用的场景事件组的核心以及Set事件API做的事情事件组的特殊之处事件组为什么不关闭中断xEventGroupSetBitsFromISR内部是怎么做的? 事件组使用的场景 学校组织秋游,组长在等待: 张三:我到了 李四:我到了 王五:我到了 组长说:好,大家都到齐了,出发! 秋游回来第二天就要提交一篇心得报告,组长在焦急等待:张三、李四、王五谁先写好就交谁的

UVM:callback机制的意义和用法

1. 作用         Callback机制在UVM验证平台,最大用处就是为了提高验证平台的可重用性。在不创建复杂的OOP层次结构前提下,针对组件中的某些行为,在其之前后之后,内置一些函数,增加或者修改UVM组件的操作,增加新的功能,从而实现一个环境多个用例。此外还可以通过Callback机制构建异常的测试用例。 2. 使用步骤         (1)在UVM组件中内嵌callback函

Smarty模板引擎工作机制(一)

深入浅出Smarty模板引擎工作机制,我们将对比使用smarty模板引擎和没使用smarty模板引擎的两种开发方式的区别,并动手开发一个自己的模板引擎,以便加深对smarty模板引擎工作机制的理解。 在没有使用Smarty模板引擎的情况下,我们都是将PHP程序和网页模板合在一起编辑的,好比下面的源代码: <?php$title="深处浅出之Smarty模板引擎工作机制";$content=