Keras模型--Sequential model

2024-02-20 16:58
文章标签 模型 model keras sequential

本文主要是介绍Keras模型--Sequential model,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于Keras模型:
Keras有两类模型:Sequential 顺序模型 和 使用函数式 API 的 Model 类模型。
两大模型的共同方法:

model.summary(): 打印出模型概述信息。 
model.get_config(): 返回包含模型配置信息的字典。
model.get_weights(): 返回模型权重的张量列表,类型为 Numpy array。
model.set_weights(weights): 从 Nympy array 中为模型设置权重。列表中的数组必须与 get_weights() 返回的权重具有相同的尺寸。
model.to_json(): 以 JSON 字符串的形式返回模型的表示。请注意,该表示不包括权重,只包含结构。
model.to_yaml(): 以 YAML 字符串的形式返回模型的表示。请注意,该表示不包括权重,只包含结构。
model.save_weights(filepath): 将模型权重存储为 HDF5 文件。
model.load_weights(filepath, by_name=False): 从 HDF5 文件(由 save_weights 创建)中加载权重。

更多信息:https://keras.io/zh/models/sequential/


Sequential 顺序模型 API
verbose: 0, 1 或 2。日志显示模式。 0 = 安静模式, 1 = 进度条, 2 = 每轮一行。

evaluate(self, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None)

steps: 整数或 None。 声明评估结束之前的总步数(批次样本)。默认值 None。

predict

predict(self, x, batch_size=None, verbose=0, steps=None)

为输入样本生成输出预测。输入样本逐批处理。
steps: 声明预测结束之前的总步数(批次样本)。默认值 None。


数据生成器:

fit_generator

fit_generator(self, generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0)

使用 Python 生成器逐批生成的数据,按批次训练模型。
生成器与模型并行运行,以提高效率。 例如,这可以让你在 CPU 上对图像进行实时数据增强,以在 GPU 上训练模型。
参数:

参数generator: 一个生成器。 生成器的输出应该为以下之一:一个 (inputs, targets) 元组一个 (inputs, targets, sample_weights) 元组。 所有的数组都必须包含同样数量的样本。生成器将无限地在数据集上循环。当运行到第 steps_per_epoch 时,记一个 epoch 结束。steps_per_epoch: 在声明一个 epoch 完成并开始下一个 epoch 之前从 generator 产生的总步数(批次样本)。它通常应该等于你的数据集的样本数量除以批量大小。可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。epochs: 整数,数据的迭代总轮数。请注意,与 initial_epoch 一起,参数 epochs 应被理解为 「最终轮数」。模型并不是训练了 epochs 轮,而是到第 epochs 轮停止训练。verbose: 日志显示模式。012。callbacks: 在训练时调用的一系列回调函数。validation_data: 它可以是以下之一:验证数据的生成器一个 (inputs, targets) 元组一个 (inputs, targets, sample_weights) 元组。validation_steps: 仅当 validation_data 是一个生成器时才可用。 每个 epoch 结束时验证集生成器产生的步数。它通常应该等于你的数据集的样本数量除以批量大小。可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。class_weight: 将类别映射为权重的字典。max_queue_size: 生成器队列的最大尺寸。workers: 使用的最大进程数量。use_multiprocessing: 如果 True,则使用基于进程的多线程。 请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。shuffle: 是否在每轮迭代之前打乱 batch 的顺序。只能与 Sequence (keras.utils.Sequence) 实例同用。initial_epoch: 开始训练的轮次(有助于恢复之前的训练)。
def generate_arrays_from_file(path):while 1:f = open(path)for line in f:# create Numpy arrays of input data# and labels, from each line in the filex, y = process_line(line)yield (x, y)f.close()model.fit_generator(generate_arrays_from_file('/my_file.txt'),steps_per_epoch=1000, epochs=10)

evaluate_generator

evaluate_generator(self, generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False)

在数据生成器上评估模型。
参数:

generator: 生成器,生成 (inputs, targets) 或 (inputs, targets, sample_weights)
steps: 在停止之前,来自 generator 的总步数 (样本批次)。 可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。
max_queue_size: 生成器队列的最大尺寸。
workers: 使用的最大进程数量。
use_multiprocessing: 如果 True,则使用基于进程的多线程。 请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。

predict_generator

predict_generator(self, generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)

为来自数据生成器的输入样本生成预测。
参数:

generator: 返回批量输入样本的生成器。
steps: 在停止之前,来自 generator 的总步数 (样本批次)。 可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。
max_queue_size: 生成器队列的最大尺寸。
workers: 使用的最大进程数量。
use_multiprocessing: 如果 True,则使用基于进程的多线程。 请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。
verbose: 日志显示模式, 0 或 1。

get_layer

# 提取模型的某一层,返回的是一个层实例
get_layer(self, name=None, index=None)

这篇关于Keras模型--Sequential model的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728897

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee