Keras模型--Sequential model

2024-02-20 16:58
文章标签 模型 model keras sequential

本文主要是介绍Keras模型--Sequential model,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于Keras模型:
Keras有两类模型:Sequential 顺序模型 和 使用函数式 API 的 Model 类模型。
两大模型的共同方法:

model.summary(): 打印出模型概述信息。 
model.get_config(): 返回包含模型配置信息的字典。
model.get_weights(): 返回模型权重的张量列表,类型为 Numpy array。
model.set_weights(weights): 从 Nympy array 中为模型设置权重。列表中的数组必须与 get_weights() 返回的权重具有相同的尺寸。
model.to_json(): 以 JSON 字符串的形式返回模型的表示。请注意,该表示不包括权重,只包含结构。
model.to_yaml(): 以 YAML 字符串的形式返回模型的表示。请注意,该表示不包括权重,只包含结构。
model.save_weights(filepath): 将模型权重存储为 HDF5 文件。
model.load_weights(filepath, by_name=False): 从 HDF5 文件(由 save_weights 创建)中加载权重。

更多信息:https://keras.io/zh/models/sequential/


Sequential 顺序模型 API
verbose: 0, 1 或 2。日志显示模式。 0 = 安静模式, 1 = 进度条, 2 = 每轮一行。

evaluate(self, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None)

steps: 整数或 None。 声明评估结束之前的总步数(批次样本)。默认值 None。

predict

predict(self, x, batch_size=None, verbose=0, steps=None)

为输入样本生成输出预测。输入样本逐批处理。
steps: 声明预测结束之前的总步数(批次样本)。默认值 None。


数据生成器:

fit_generator

fit_generator(self, generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0)

使用 Python 生成器逐批生成的数据,按批次训练模型。
生成器与模型并行运行,以提高效率。 例如,这可以让你在 CPU 上对图像进行实时数据增强,以在 GPU 上训练模型。
参数:

参数generator: 一个生成器。 生成器的输出应该为以下之一:一个 (inputs, targets) 元组一个 (inputs, targets, sample_weights) 元组。 所有的数组都必须包含同样数量的样本。生成器将无限地在数据集上循环。当运行到第 steps_per_epoch 时,记一个 epoch 结束。steps_per_epoch: 在声明一个 epoch 完成并开始下一个 epoch 之前从 generator 产生的总步数(批次样本)。它通常应该等于你的数据集的样本数量除以批量大小。可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。epochs: 整数,数据的迭代总轮数。请注意,与 initial_epoch 一起,参数 epochs 应被理解为 「最终轮数」。模型并不是训练了 epochs 轮,而是到第 epochs 轮停止训练。verbose: 日志显示模式。012。callbacks: 在训练时调用的一系列回调函数。validation_data: 它可以是以下之一:验证数据的生成器一个 (inputs, targets) 元组一个 (inputs, targets, sample_weights) 元组。validation_steps: 仅当 validation_data 是一个生成器时才可用。 每个 epoch 结束时验证集生成器产生的步数。它通常应该等于你的数据集的样本数量除以批量大小。可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。class_weight: 将类别映射为权重的字典。max_queue_size: 生成器队列的最大尺寸。workers: 使用的最大进程数量。use_multiprocessing: 如果 True,则使用基于进程的多线程。 请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。shuffle: 是否在每轮迭代之前打乱 batch 的顺序。只能与 Sequence (keras.utils.Sequence) 实例同用。initial_epoch: 开始训练的轮次(有助于恢复之前的训练)。
def generate_arrays_from_file(path):while 1:f = open(path)for line in f:# create Numpy arrays of input data# and labels, from each line in the filex, y = process_line(line)yield (x, y)f.close()model.fit_generator(generate_arrays_from_file('/my_file.txt'),steps_per_epoch=1000, epochs=10)

evaluate_generator

evaluate_generator(self, generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False)

在数据生成器上评估模型。
参数:

generator: 生成器,生成 (inputs, targets) 或 (inputs, targets, sample_weights)
steps: 在停止之前,来自 generator 的总步数 (样本批次)。 可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。
max_queue_size: 生成器队列的最大尺寸。
workers: 使用的最大进程数量。
use_multiprocessing: 如果 True,则使用基于进程的多线程。 请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。

predict_generator

predict_generator(self, generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)

为来自数据生成器的输入样本生成预测。
参数:

generator: 返回批量输入样本的生成器。
steps: 在停止之前,来自 generator 的总步数 (样本批次)。 可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。
max_queue_size: 生成器队列的最大尺寸。
workers: 使用的最大进程数量。
use_multiprocessing: 如果 True,则使用基于进程的多线程。 请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。
verbose: 日志显示模式, 0 或 1。

get_layer

# 提取模型的某一层,返回的是一个层实例
get_layer(self, name=None, index=None)

这篇关于Keras模型--Sequential model的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728897

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号