【bzoj4011】【HNOI2015】【落忆枫音】【dp+容斥原理】

2024-02-20 15:08

本文主要是介绍【bzoj4011】【HNOI2015】【落忆枫音】【dp+容斥原理】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description

「恒逸,你相信灵魂的存在吗?」 

郭恒逸和姚枫茜漫步在枫音乡的街道上。望着漫天飞舞的红枫,枫茜突然问出
这样一个问题。 
「相信吧。不然我们是什么,一团肉吗?要不是有灵魂……我们也不可能再见
到你姐姐吧。」 
恒逸给出了一个略微无厘头的回答。枫茜听后笑了笑。 
「那你仔细观察过枫叶吗?」 
说罢,枫茜伸手,接住了一片飘落的枫叶。 
「其实每一片枫叶都是有灵魂的。你看,枫叶上不是有这么多脉络吗?我听说,
枫叶上有一些特殊的位置,就和人的穴位一样。脉络都是连接在这些穴位之间的。
枫树的灵魂流过每片枫叶的根部,沿着这些脉络,慢慢漫进穴位,沁入整片枫叶。
也是因为这个原因,脉络才都是单向的,灵魂可不能倒着溜回来呢。」 
恒逸似懂非懂地点了点头。枫茜接着说了下去。 
「正是因为有了灵魂,每片枫叶才会与众不同。也正是因为有了灵魂,每片枫
叶也都神似其源本的枫树,就连脉络也形成了一棵树的样子。但如果仔细看的话,
会发现,在脉络树之外,还存在其它的非常细的脉络。虽然这些脉络并不在树上,
但他们的方向也同样顺着灵魂流淌的方向,绝不会出现可能使灵魂倒流的回路。」  
恒逸好像突然想到了什么。 
「那这些脉络岂不是可以取代已有的脉络,出现在脉络树上?」 
枫茜闭上了眼睛。 
「是啊,就是这样。脉络树并不是唯一的。只要有一些微小的偏差,脉络树就
可能差之万里,哪怕是在这同一片枫叶上。就像我们的故事,结局也不是唯一的。
只要改变一个小小的选项,故事流程可能就会被彻底扭转。」 
「真是深奥啊……」 
恒逸盯着这片红枫,若有所思地说。枫茜继续说道。 
「还不止如此呢。所有的脉络都不会永恒存在,也不会永恒消失。不管是脉络
树上的脉络,还是之外的细小脉络,都是如此。存在的脉络可能断开消失,消失的
脉络也可能再次连接。万物皆处在永恒的变化之中,人与人之间的羁绊也是。或许
有一天,我们与大家的羁绊也会如同脉络一样,被无情地斩断。或许我们也终将成
为“枫音乡的过客”。或许这一切都会是必然,是枫树的灵魂所决定的……」 
枫茜的眼角泛起了几滴晶莹剔透的泪珠。恒逸看着这样的枫茜,将她抱入怀中。  
「别这样想,枫茜。就算脉络断开,也有可能还会有新的脉络树,也还会与枫
树的根相连。这样的话,我们的羁绊仍然存在,只是稍微绕了一些远路而已。无论
如何,我都不会离开你的。因为你是我穷尽一生所寻找的,我的真恋啊!」 
两人的目光对上了。枫茜幸福地笑了,把头埋进了恒逸的怀抱。从远方山上的
枫林中,传来了枫的声音。 
【问题描述】 
不妨假设枫叶上有 n个穴位,穴位的编号为 1 ~  n。有若干条有向的脉络连接
着这些穴位。穴位和脉络组成一个有向无环图——称之为脉络图(例如图 1),穴
位的编号使得穴位 1 没有从其他穴位连向它的脉络,即穴位 1 只有连出去的脉络;
由上面的故事可知,这个有向无环图存在一个树形子图,它是以穴位 1为根的包含
全部n个穴位的一棵树——称之为脉络树(例如图 2和图 3给出的树都是图1给出
的脉络图的子图);值得注意的是,脉络图中的脉络树方案可能有多种可能性,例
如图2和图 3就是图 1给出的脉络图的两个脉络树方案。 
脉络树的形式化定义为:以穴位 r 为根的脉络树由枫叶上全部 n个穴位以及 n
-  1 条脉络组成,脉络树里没有环,亦不存在从一个穴位连向自身的脉络,且对于
枫叶上的每个穴位 s,都存在一条唯一的包含于脉络树内的脉络路径,使得从穴位
r 出发沿着这条路径可以到达穴位 s。 
现在向脉络图添加一条与已有脉络不同的脉络(注意:连接 2个穴位但方向不
同的脉络是不同的脉络,例如从穴位3到4的脉络与从4到3的脉络是不同的脉络,
因此,图 1 中不能添加从 3 到 4 的脉络,但可添加从 4 到 3 的脉络),这条新脉络
可以是从一个穴位连向自身的(例如,图 1 中可添加从 4 到 4 的脉络)。原脉络图
添加这条新脉络后得到的新脉络图可能会出现脉络构成的环。 
请你求出添加了这一条脉络之后的新脉络图的以穴位 1 为根的脉络树方案数。
由于方案可能有太多太多,请输出方案数对 1,000,000,007 取模得到的结果。 

Input

输入文件的第一行包含四个整数 n、m、x和y,依次代表枫叶上的穴位数、脉

络数,以及要添加的脉络是从穴位 x连向穴位y的。 
接下来 m行,每行两个整数,由空格隔开,代表一条脉络。第 i 行的两个整数
为ui和vi,代表第 i 条脉络是从穴位 ui连向穴位vi的。 

Output

 输出一行,为添加了从穴位 x连向穴位 y的脉络后,枫叶上以穴位 1 为根的脉

络树的方案数对 1,000,000,007取模得到的结果。 

Sample Input

4 4 4 3
1 2
1 3
2 4
3 2

Sample Output

3

HINT

 对于所有测试数据,1 <= n <= 100000,n - 1 <= m <= min(200000, n(n – 1) / 2), 


1 <= x, y, ui, vi <= n。

题解:

          如果不新加一条边,那么为每个点随机选一条入边,得到的就是一种方案.

          所以把所有点的入度乘起来就是不加边的答案.

          现在新加一条边,我们依然考虑这种算法.可以发现这样多算了出现环的方案.

          假设添加的边是s->t,

          那么对于原图中t->s的每一条路径.不在该路径上的点的入度的乘积的和就是成环的方案数.

          因为原图是一个dag所以这个可以dp.

          设f[i]表示t->i的路径的答案.枚举i的后继节点进行转移即可.

          注意在从i转移到j的时候,j由不在路径中变成了在路径中,所以还要乘一个j的入度的逆元.

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 100010
#define M 200010
#define P 1000000007
using namespace std;
long long f[N],ans(1),inv[N],d[N],in[N];
int n,q[N],m,x,y,a,b,point[N],next[M<<1],cnt;
struct use{int st,en;
}e[M<<1];
int read(){int x(0);char ch=getchar();while (ch<'0'||ch>'9') ch=getchar();while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();return x;
}
void add(int x,int y){next[++cnt]=point[x];point[x]=cnt;e[cnt].st=x;e[cnt].en=y;
}
void dp(){int h(0),t(0);f[b]=ans;for (int i=1;i<=n;i++) if (!d[i]) q[++t]=i;while (h<t){int u=q[++h];(f[u]*=inv[in[u]])%=P;for (int i=point[u];i;i=next[i]){(f[e[i].en]+=f[u])%=P;d[e[i].en]--;if (!d[e[i].en]) q[++t]=e[i].en; }}
}
int main(){n=read();m=read();a=read();b=read();for (int i=1;i<=m;i++){x=read();y=read();in[y]++;d[y]++; add(x,y); } in[b]++;inv[1]=1;for (int i=2;i<=n;i++) inv[i]=P-(long long)P/i*inv[P%i]%P;for (int i=2;i<=n;i++) (ans*=in[i])%=P;if (b==1){cout<<ans<<endl;return 0;}dp();cout<<(ans-f[a]+P)%P<<endl;
}


这篇关于【bzoj4011】【HNOI2015】【落忆枫音】【dp+容斥原理】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728615

相关文章

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工