Pytorch-Adam算法解析

2024-02-20 06:20
文章标签 算法 解析 pytorch adam

本文主要是介绍Pytorch-Adam算法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关注B站可以观看更多实战教学视频:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频 (bilibili.com)

Hi,兄弟们,这里是肆十二,今天我们来讨论一下深度学习中的Adam优化算法。

Adam算法解析

Adam算法是一种在深度学习中广泛使用的优化算法,它的名称来源于适应性矩估计(Adaptive Moment Estimation)。Adam算法结合了两种扩展式的随机梯度下降法的优点,即适应性梯度算法(AdaGrad)和均方根传播(RMSProp)。它通过计算梯度的一阶矩估计和二阶矩估计,为不同的参数设计独立的自适应性学习率。

具体来说,Adam算法的特点和工作原理如下:

  1. 惯性保持:Adam算法记录了梯度的一阶矩,即过往所有梯度与当前梯度的平均,使得每一次更新时,梯度能平滑、稳定地过渡。这种惯性保持的特性使得算法能够适应不稳定的目标函数。
  2. 环境感知:Adam算法还记录了梯度的二阶矩,即过往梯度平方与当前梯度平方的平均。这体现了算法对环境的感知能力,并为不同的参数产生自适应的学习速率。
  3. 超参数解释性:Adam算法中的超参数具有很好的解释性,通常无需调整或仅需很少的微调。这些超参数包括学习率、一阶矩估计的指数衰减率、二阶矩估计的指数衰减率以及一个用于数值稳定的小常数。

在实际应用中,Adam算法已被证明在许多任务上,如计算机视觉和自然语言处理等深度学习应用中,具有优秀的性能。它特别适合处理大规模数据和参数的优化问题,以及非稳态目标和包含高噪声或稀疏梯度的问题。

总的来说,Adam算法是一种高效、易于实现的优化算法,它通过结合多种优化策略,为深度学习模型提供了更稳定、更快速的收敛性能。

Pytorch中的Adam算法

在PyTorch中,torch.optim.Adam 是实现 Adam 优化算法的类。以下是 Adam 优化器的一些关键参数解析:

  • params (iterable): 待优化参数的迭代器或者是定义了参数组的字典。
  • lr (float, optional): 学习率 (默认: 1e-3)。
  • betas (Tuple[float, float], optional): 用于计算梯度以及梯度平方的运行平均值的系数 (默认: (0.9, 0.999))。
  • eps (float, optional): 为了增加数值稳定性而添加到分母的一个项 (默认: 1e-8)。
  • weight_decay (float, optional): 权重衰减 (L2 惩罚) (默认: 0)。
  • amsgrad (boolean, optional): 是否使用 AMSGrad 变种算法,该算法在某些情况下能提供更好的收敛性 (默认: False)。

以下是一个简单的使用案例:

import torch  
import torch.nn as nn  
from torch.optim import Adam  # 定义一个简单的模型  
model = nn.Sequential(  nn.Linear(10, 5),  nn.ReLU(),  nn.Linear(5, 2),  
)  # 定义损失函数  
criterion = nn.CrossEntropyLoss()  # 定义优化器,传入模型的参数和学习率等  
optimizer = Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)  # 假设有输入数据和目标  
input_data = torch.randn(1, 10)  
target = torch.tensor([1])  # 模型的训练循环(这里只展示一个迭代)  
for epoch in range(1):  # 通常会有多个epoch  # 前向传播  output = model(input_data)  # 计算损失  loss = criterion(output, target)  # 反向传播  optimizer.zero_grad()  # 清除之前的梯度  loss.backward()        # 计算当前梯度  # 更新权重  optimizer.step()       # 应用梯度更新  print(f'Epoch {epoch+1}, Loss: {loss.item()}')

在上面的例子中,我们首先定义了一个简单的两层神经网络模型,然后定义了交叉熵损失函数作为优化目标。接着,我们创建了一个 Adam 优化器实例,并将模型的参数、学习率以及其他可选参数传递给它。在训练循环中,我们执行了标准的前向传播、损失计算、反向传播以及权重更新步骤。在每次迭代结束时,我们打印出当前的损失值。

注意,实际应用中,训练循环会包含多个 epoch,并且通常会有数据加载、模型验证和保存等其他步骤。此外,学习率和其他超参数可能需要根据具体任务进行调整。

这篇关于Pytorch-Adam算法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727300

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int