【TT100K中对test结果按照目标大小进行分类评估 anno_func.py】

2024-02-20 04:32

本文主要是介绍【TT100K中对test结果按照目标大小进行分类评估 anno_func.py】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

caffe 官方例程之R-CNN

def eval_annos(annos_gd, annos_rt, iou=0.75, imgids=None, check_type=True, types=None, minscore=40, minboxsize=0, maxboxsize=400, match_same=True):ac_n, ac_c = 0,0	#accuracyrc_n, rc_c = 0,0	#recallif imgids==None:imgids = annos_rt['imgs'].keys()	#字典 dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}if types!=None:							#key:valuetypes = { t:0 for t in types }		#类似{1: 0, 2: 0, 3: 0, 4: 0, 5: 0}miss = {"imgs":{}}	#字典的嵌套?wrong = {"imgs":{}}right = {"imgs":{}}for imgid in imgids:	#对于某一张图片v = annos_rt['imgs'][imgid]		#预测的图片vg = annos_gd['imgs'][imgid]	#实际的convert = lambda objs: [ [ obj['bbox'][key] for key in ['xmin','ymin','xmax','ymax']] for obj in objs]#不是常规的双层循环,按照括号来说,后面是外层循环#lambda x, y: x*y#函数输入是x和y,输出是它们的积x*yobjs_g = vg["objects"]	#实际的目标objs_r = v["objects"]	#预测的目标bg = convert(objs_g)	#实际的边框br = convert(objs_r)	#预测的边框match_g = [-1]*len(bg)	#边框是否匹配?一开始都是-1?列表的乘法即为重复match_r = [-1]*len(br)	#列表的加法为拼接if types!=None:for i in range(len(match_g)):if not types.has_key(objs_g[i][  'category']):#如果键在字典里返回true,否则返回false。match_g[i] = -2	#真实框的类别没有检测出来?真实框的类别不在设定的检测范围内?所以是没用的?for i in range(len(match_r)):if not types.has_key(objs_r[i]['category']):match_r[i] = -2 #预测框的类别没有检测出来?所以也是没用的?for i in range(len(match_r)):if objs_r[i].has_key('score') and objs_r[i]['score']<minscore:#我一直没找到这个score的定义,不知道这是个什么分数match_r[i] = -2	#分数太低就淘汰?就没用了?matches = []			#空的列表for i,boxg in enumerate(bg):	#枚举 enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)#组合为一个索引序列,同时列出下标和数据for j,boxr in enumerate(br):if match_g[i] == -2 or match_r[j] == -2:continue	#if continue的用法(跳过本次循环,执行下一个循环)if match_same and objs_g[i]['category'] != objs_r[j]['category']: continue	#分类不一样就淘汰?#match_same是传进来的参数tiou = calc_iou(boxg, boxr)		#如果分类一致就计算iou(不一定是同一个目标)if tiou>iou:					#大于输入的阈值,有可能是同一目标?matches.append((tiou, i, j))#列表中添加元组?matches = sorted(matches, key=lambda x:-x[0])	#按第一个元素(tiou)反向(由大到小)排列#lambda函数示例:#lambda x, y: x*y#函数输入是x和y,输出是它们的积x*yfor tiou, i, j in matches:if match_g[i] == -1 and match_r[j] == -1:	#不是-2就证明起码不是没用的?match_g[i] = jmatch_r[j] = i	#记录对应关系?for i in range(len(match_g)):boxsize = box_long_size(objs_g[i]['bbox'])erase = Falseif not (boxsize>=minboxsize and boxsize<maxboxsize):erase = True	#大小不符合就擦除?#if types!=None and not types.has_key(objs_g[i]['category']):#    erase = Trueif erase:if match_g[i] >= 0:match_r[match_g[i]] = -2	#match_g[i] = jmatch_g[i] = -2for i in range(len(match_r)):boxsize = box_long_size(objs_r[i]['bbox'])if match_r[i] != -1: continueif not (boxsize>=minboxsize and boxsize<maxboxsize):match_r[i] = -2	#??????预测框大小不符合也删掉?miss["imgs"][imgid] = {"objects":[]}wrong["imgs"][imgid] = {"objects":[]}right["imgs"][imgid] = {"objects":[]}miss_objs = miss["imgs"][imgid]["objects"]wrong_objs = wrong["imgs"][imgid]["objects"]right_objs = right["imgs"][imgid]["objects"]tt = 0for i in range(len(match_g)):if match_g[i] == -1:	#类别存在但没找到匹配对象miss_objs.append(objs_g[i])for i in range(len(match_r)):if match_r[i] == -1:	#类别存在但没找到匹配对象obj = copy.deepcopy(objs_r[i])obj['correct_catelog'] = 'none'wrong_objs.append(obj)elif match_r[i] != -2:	#类别存在且找到匹配对象j = match_r[i]      obj = copy.deepcopy(objs_r[i])if not check_type or objs_g[j]['category'] == objs_r[i]['category']:	#优先级&&如果分类一致right_objs.append(objs_r[i])tt+=1	#分类正确的计数else:		#分类不正确?obj['correct_catelog'] = objs_g[j]['category']wrong_objs.append(obj)rc_n += len(objs_g) - match_g.count(-2)	#计数 全部的真实框-没用的ac_n += len(objs_r) - match_r.count(-2)	#计数 全部的预测框-没用的ac_c += tt	#分类正确的计数rc_c += tt	#分类正确的计数if types==None:	#types是传进来的参数styps = "all"elif len(types)==1:styps = types.keys()[0]elif not check_type or len(types)==0:styps = "none"else:styps = "[%s, ...total %s...]"%(types.keys()[0], len(types))report = "iou:%s, size:[%s,%s), types:%s, accuracy:%s, recall:%s"% (iou, minboxsize, maxboxsize, styps, 1 if ac_n==0 else ac_c*1.0/ac_n, 1 if rc_n==0 else rc_c*1.0/rc_n)summury = {"iou":iou,"accuracy":1 if ac_n==0 else ac_c*1.0/ac_n,"recall":1 if rc_n==0 else rc_c*1.0/rc_n,"miss":miss,"wrong":wrong,"right":right,"report":report}return summury

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
25
25
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于【TT100K中对test结果按照目标大小进行分类评估 anno_func.py】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727054

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

java获取图片的大小、宽度、高度方式

《java获取图片的大小、宽度、高度方式》文章介绍了如何将File对象转换为MultipartFile对象的过程,并分享了个人经验,希望能为读者提供参考... 目China编程录Java获取图片的大小、宽度、高度File对象(该对象里面是图片)MultipartFile对象(该对象里面是图片)总结java获取图片

如何使用Spring boot的@Transactional进行事务管理

《如何使用Springboot的@Transactional进行事务管理》这篇文章介绍了SpringBoot中使用@Transactional注解进行声明式事务管理的详细信息,包括基本用法、核心配置... 目录一、前置条件二、基本用法1. 在方法上添加注解2. 在类上添加注解三、核心配置参数1. 传播行为(

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate