【TT100K中对test结果按照目标大小进行分类评估 anno_func.py】

2024-02-20 04:32

本文主要是介绍【TT100K中对test结果按照目标大小进行分类评估 anno_func.py】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

caffe 官方例程之R-CNN

def eval_annos(annos_gd, annos_rt, iou=0.75, imgids=None, check_type=True, types=None, minscore=40, minboxsize=0, maxboxsize=400, match_same=True):ac_n, ac_c = 0,0	#accuracyrc_n, rc_c = 0,0	#recallif imgids==None:imgids = annos_rt['imgs'].keys()	#字典 dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}if types!=None:							#key:valuetypes = { t:0 for t in types }		#类似{1: 0, 2: 0, 3: 0, 4: 0, 5: 0}miss = {"imgs":{}}	#字典的嵌套?wrong = {"imgs":{}}right = {"imgs":{}}for imgid in imgids:	#对于某一张图片v = annos_rt['imgs'][imgid]		#预测的图片vg = annos_gd['imgs'][imgid]	#实际的convert = lambda objs: [ [ obj['bbox'][key] for key in ['xmin','ymin','xmax','ymax']] for obj in objs]#不是常规的双层循环,按照括号来说,后面是外层循环#lambda x, y: x*y#函数输入是x和y,输出是它们的积x*yobjs_g = vg["objects"]	#实际的目标objs_r = v["objects"]	#预测的目标bg = convert(objs_g)	#实际的边框br = convert(objs_r)	#预测的边框match_g = [-1]*len(bg)	#边框是否匹配?一开始都是-1?列表的乘法即为重复match_r = [-1]*len(br)	#列表的加法为拼接if types!=None:for i in range(len(match_g)):if not types.has_key(objs_g[i][  'category']):#如果键在字典里返回true,否则返回false。match_g[i] = -2	#真实框的类别没有检测出来?真实框的类别不在设定的检测范围内?所以是没用的?for i in range(len(match_r)):if not types.has_key(objs_r[i]['category']):match_r[i] = -2 #预测框的类别没有检测出来?所以也是没用的?for i in range(len(match_r)):if objs_r[i].has_key('score') and objs_r[i]['score']<minscore:#我一直没找到这个score的定义,不知道这是个什么分数match_r[i] = -2	#分数太低就淘汰?就没用了?matches = []			#空的列表for i,boxg in enumerate(bg):	#枚举 enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)#组合为一个索引序列,同时列出下标和数据for j,boxr in enumerate(br):if match_g[i] == -2 or match_r[j] == -2:continue	#if continue的用法(跳过本次循环,执行下一个循环)if match_same and objs_g[i]['category'] != objs_r[j]['category']: continue	#分类不一样就淘汰?#match_same是传进来的参数tiou = calc_iou(boxg, boxr)		#如果分类一致就计算iou(不一定是同一个目标)if tiou>iou:					#大于输入的阈值,有可能是同一目标?matches.append((tiou, i, j))#列表中添加元组?matches = sorted(matches, key=lambda x:-x[0])	#按第一个元素(tiou)反向(由大到小)排列#lambda函数示例:#lambda x, y: x*y#函数输入是x和y,输出是它们的积x*yfor tiou, i, j in matches:if match_g[i] == -1 and match_r[j] == -1:	#不是-2就证明起码不是没用的?match_g[i] = jmatch_r[j] = i	#记录对应关系?for i in range(len(match_g)):boxsize = box_long_size(objs_g[i]['bbox'])erase = Falseif not (boxsize>=minboxsize and boxsize<maxboxsize):erase = True	#大小不符合就擦除?#if types!=None and not types.has_key(objs_g[i]['category']):#    erase = Trueif erase:if match_g[i] >= 0:match_r[match_g[i]] = -2	#match_g[i] = jmatch_g[i] = -2for i in range(len(match_r)):boxsize = box_long_size(objs_r[i]['bbox'])if match_r[i] != -1: continueif not (boxsize>=minboxsize and boxsize<maxboxsize):match_r[i] = -2	#??????预测框大小不符合也删掉?miss["imgs"][imgid] = {"objects":[]}wrong["imgs"][imgid] = {"objects":[]}right["imgs"][imgid] = {"objects":[]}miss_objs = miss["imgs"][imgid]["objects"]wrong_objs = wrong["imgs"][imgid]["objects"]right_objs = right["imgs"][imgid]["objects"]tt = 0for i in range(len(match_g)):if match_g[i] == -1:	#类别存在但没找到匹配对象miss_objs.append(objs_g[i])for i in range(len(match_r)):if match_r[i] == -1:	#类别存在但没找到匹配对象obj = copy.deepcopy(objs_r[i])obj['correct_catelog'] = 'none'wrong_objs.append(obj)elif match_r[i] != -2:	#类别存在且找到匹配对象j = match_r[i]      obj = copy.deepcopy(objs_r[i])if not check_type or objs_g[j]['category'] == objs_r[i]['category']:	#优先级&&如果分类一致right_objs.append(objs_r[i])tt+=1	#分类正确的计数else:		#分类不正确?obj['correct_catelog'] = objs_g[j]['category']wrong_objs.append(obj)rc_n += len(objs_g) - match_g.count(-2)	#计数 全部的真实框-没用的ac_n += len(objs_r) - match_r.count(-2)	#计数 全部的预测框-没用的ac_c += tt	#分类正确的计数rc_c += tt	#分类正确的计数if types==None:	#types是传进来的参数styps = "all"elif len(types)==1:styps = types.keys()[0]elif not check_type or len(types)==0:styps = "none"else:styps = "[%s, ...total %s...]"%(types.keys()[0], len(types))report = "iou:%s, size:[%s,%s), types:%s, accuracy:%s, recall:%s"% (iou, minboxsize, maxboxsize, styps, 1 if ac_n==0 else ac_c*1.0/ac_n, 1 if rc_n==0 else rc_c*1.0/rc_n)summury = {"iou":iou,"accuracy":1 if ac_n==0 else ac_c*1.0/ac_n,"recall":1 if rc_n==0 else rc_c*1.0/rc_n,"miss":miss,"wrong":wrong,"right":right,"report":report}return summury

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
25
25
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于【TT100K中对test结果按照目标大小进行分类评估 anno_func.py】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727054

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测