【python】深入探索使用Matplotlib中的plt.legend()添加图例

2024-02-20 04:04

本文主要是介绍【python】深入探索使用Matplotlib中的plt.legend()添加图例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当我们绘制复杂的图表,尤其是包含多个数据系列的图表时,一个清晰、易读的图例是至关重要的。plt.legend()函数是Matplotlib库中用于添加和定制图例的关键工具。在本篇博文中,我们将深入探讨plt.legend()的功能、用法以及如何通过它提升图表的可读性和美观度。

1.plt.legend()的基本用法

首先,我们需要了解plt.legend()的基本用法。通常,在绘制完图表的数据系列后,我们可以简单地调用plt.legend()来自动创建一个图例。例如:

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 13:33:58 2024@author: zqq
"""import matplotlib.pyplot as plt  
import numpy as np  x = np.linspace(0, 10, 100)  
y1 = np.sin(x)  
y2 = np.cos(x)  plt.rcParams['axes.unicode_minus']=False  # 显示负号plt.plot(x, y1, label='sin(x)')  
plt.plot(x, y2, label='cos(x)')  plt.legend()  
plt.show()

在这个例子中,label参数用于为数据系列指定标签,这些标签随后被plt.legend()用来创建图例。

这段代码在Spyder编辑器中如下:

在这里插入图片描述
运行代码,得到下面的图表:

在这里插入图片描述
可以看到图例(蓝色实线sin(x)、橙色实线cos(x))在左下角,我们可以通过设置超参数指定该图例的位置。plt.rcParams[‘axes.unicode_minus’]=False # 显示负号,这段代码表示正常显示负号。

使用方法:

plt.legend(loc='xxx')

xxx的取值为:

  • ‘best’(默认值):自动选择最佳位置。
  • ‘upper right’:右上角。
  • ‘upper left’:左上角。
  • ‘lower right’:右下角。
  • ‘lower left’:左下角。
  • ‘right’:右侧。
  • ‘center left’:左侧中央。
  • ‘center right’:右侧中央。
  • ‘lower center’:底部中央。
  • ‘upper center’:顶部中央。

2.plt.legend()的示例

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 11:21:04 2024@author: zqq
"""import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 示例数据
x = [1, 2, 3, 4, 5, 6, 7]
y1 = [9, 12, 18, 20, 15, 17, 27]
y2 = [8, 12, 9, 14, 11, 15, 16]
y3 = [12, 14, 10, 12, 16, 18, 20]
y4 = [11, 19, 6, 15, 14, 16, 23]# 绘制数据,并添加标签
plt.plot(x, y1, label='数据系列1')
plt.plot(x, y2, label='数据系列2')
plt.plot(x, y3, label='数据系列3')
plt.plot(x, y4, label='数据系列4')plt.rcParams['font.sans-serif']=['simHei']  # 中文显示# 添加图例
plt.legend(loc='lower right')# 显示图表
plt.show()

plt.rcParams[‘font.sans-serif’]=[‘simHei’] # 中文显示,这段代码表示正常显示中文。

plt.legend(loc=‘lower right’),显示在右下角:

在这里插入图片描述

plt.legend(loc=‘upper left’),显示在左上角:

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 11:21:04 2024@author: zqq
"""import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 示例数据
x = [1, 2, 3, 4, 5, 6, 7]
y1 = [9, 12, 18, 20, 15, 17, 27]
y2 = [8, 12, 9, 14, 11, 15, 16]
y3 = [12, 14, 10, 12, 16, 18, 20]
y4 = [11, 19, 6, 15, 14, 16, 23]# 绘制数据,并添加标签
plt.plot(x, y1, label='数据系列1')
plt.plot(x, y2, label='数据系列2')
plt.plot(x, y3, label='数据系列3')
plt.plot(x, y4, label='数据系列4')plt.rcParams['font.sans-serif']=['simHei']  # 中文显示# 添加图例
plt.legend(loc='upper left')# 显示图表
plt.show()

在这里插入图片描述

plt.legend(),默认参数,显示在最佳位置:

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 11:21:04 2024@author: zqq
"""import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 示例数据
x = [1, 2, 3, 4, 5, 6, 7]
y1 = [9, 12, 18, 20, 15, 17, 27]
y2 = [8, 12, 9, 14, 11, 15, 16]
y3 = [12, 14, 10, 12, 16, 18, 20]
y4 = [11, 19, 6, 15, 14, 16, 23]# 绘制数据,并添加标签
plt.plot(x, y1, label='数据系列1')
plt.plot(x, y2, label='数据系列2')
plt.plot(x, y3, label='数据系列3')
plt.plot(x, y4, label='数据系列4')plt.rcParams['font.sans-serif']=['simHei']  # 中文显示# 添加图例
plt.legend()# 显示图表
plt.show()

在这里插入图片描述

图例不仅是数据系列的标识,它也是图表整体设计的一部分。合适的图例位置、大小和样式可以极大地提高图表的可读性和吸引力。在设计图表时,考虑图例与其他图表元素(如标题、轴标签、刻度等)的协调性和一致性非常重要。plt.legend()是Matplotlib中不可或缺的一个函数,它使得我们能够轻松地为图表添加清晰、美观的图例。通过了解其基本用法和定制选项,你可以创建出既信息丰富又视觉上吸引人的图表。不断实践和探索,你将发现plt.legend()为你的数据可视化工作带来的无限可能。

这是2024年的第一篇博文,本来想写更好的内容,但是工作是越来越卷了,根本没有时间撰写更优质的博文,已经断更挺长时间了。借着今天修改代码中的图例,挤出时间写成文章,实属不易,干货不多,还望各位海涵。后面将继续更新专栏文章,回馈广大粉丝朋友。

好了,今天的学习就到这里,让我们下期再见。

参考:
https://blog.csdn.net/weixin_74850661/article/details/132949071

这篇关于【python】深入探索使用Matplotlib中的plt.legend()添加图例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/726982

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in