2.18通过字符设备驱动分步注册过程实现LED驱动的编写,编写应用程序测试

本文主要是介绍2.18通过字符设备驱动分步注册过程实现LED驱动的编写,编写应用程序测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

应用程序:

#include<stdlib.h>
#include<stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include<unistd.h>
#include<string.h>
#include<sys/ioctl.h>
#include"myled.h"int main(int argc, char const *argv[])
{int a,b;int fd=open("/dev/myled0",O_RDWR);if(fd<0){printf("打开设备文件失败\n");exit(-1);}while(1){//从终端读取printf("请输入要实现的功能\n");printf("0(关灯) 1(开灯)\n");printf("请输入>");scanf("%d",&a);printf("请输入要控制的灯\n");printf("1(LED1) 2(LED2) 3(LED3)\n");printf("请输入>");scanf("%d",&b);switch(a){case 1:ioctl(fd,LED_ON,&b);break;case 0:ioctl(fd,LED_OFF,&b);break;}}close(fd);return 0;
}

头文件:

#ifndef __HEAD_H__
#define __HEAD_H__ 
typedef struct{unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR;unsigned int PUPDR;unsigned int IDR;unsigned int ODR;
}gpio_t;
#define PHY_LED1_ADDR 0X50006000
#define PHY_LED2_ADDR    0X50007000
#define PHY_LED3_ADDR 0X50006000
#define PHY_RCC_ADDR    0X50000A28//构建功能码
#define LED_ON _IOW('l',1,int)  
#define LED_OFF _IOW('l',0,int)
#endif 

驱动程序:

#include <linux/init.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/cdev.h>
#include <linux/uaccess.h>
#include "myled.h"
struct cdev *cdev;
char kbuf[128]={0};
unsigned int major=0;//主设备号
unsigned int minor=0;//次设备号
dev_t devno;
struct class *cls;
struct device *dev;
gpio_t *vir_led1;
gpio_t *vir_led2;
gpio_t *vir_led3;
unsigned int *vir_rcc;
//封装操作方法
//定义操作方法对象并初始化
int mycdev_open(struct inode *inode, struct file *file)
{printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);return 0;
}
ssize_t mycdev_read(struct file *file, char *ubuf, size_t size, loff_t *lof)
{printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);unsigned long ret;// 向用户空间读取拷贝if (size > sizeof(kbuf)) // 用户空间期待读取的大小内核满足不了,那就给内核支持的最大大小size = sizeof(kbuf);ret = copy_to_user(ubuf, kbuf, size);if (ret) // 拷贝失败{printk("copy_to_user filed\n");return ret;}return 0;
}
ssize_t mycdev_write(struct file *file, const char *ubuf, size_t size, loff_t *lof)
{unsigned long ret;// 从用户空间读取数据if (size > sizeof(kbuf)) // 用户空间期待读取的大小内核满足不了,那就给内核支持的最大大小size = sizeof(kbuf);ret = copy_from_user(kbuf, ubuf, size);if (ret) // 拷贝失败{printk("copy_to_user filed\n");return ret;}return 0;
}long mycdev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{int wh;int ret=copy_from_user(&wh,(void *)arg,4);if(ret)//拷贝失败{printk("copy_from_user filed\n");return ret;}switch(cmd){case LED_ON:switch(wh){case 1:vir_led1->ODR |= (1<<10);break;case 2:vir_led2->ODR |= (1<<10);break;case 3:vir_led3->ODR |= (1<<8);break;} break;case LED_OFF:switch(wh){case 1:vir_led1->ODR &= (~(1<<10));break;case 2:vir_led2->ODR &= (~(1<<10));break;case 3:vir_led3->ODR &= (~(1<<8));break;} break;}return 0;
}int mycdev_close(struct inode *inode, struct file *file)
{printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);return 0;
}int all_led_init(void)
{//寄存器地址的映射vir_led1=ioremap(PHY_LED1_ADDR,sizeof(gpio_t));if(vir_led1==NULL){printk("ioremap filed:%d\n",__LINE__);return -ENOMEM;}vir_led2=ioremap(PHY_LED2_ADDR,sizeof(gpio_t));if(vir_led2==NULL){printk("ioremap filed:%d\n",__LINE__);return -ENOMEM;}vir_led3=vir_led1;vir_rcc=ioremap(PHY_RCC_ADDR,4);if(vir_rcc==NULL){printk("ioremap filed:%d\n",__LINE__);return -ENOMEM;}printk("物理地址映射成功\n");//寄存器的初始化//rcc(*vir_rcc) |= (3<<4);//led1vir_led1->MODER &= (~(3<<20));vir_led1->MODER |= (1<<20);vir_led1->ODR &= (~(1<<10));//led2vir_led2->MODER &= (~(3<<20));vir_led2->MODER |= (1<<20);vir_led2->ODR &= (~(1<<10));//led3vir_led3->MODER &= (~(3<<16));vir_led1->MODER |= (1<<16);vir_led1->ODR &= (~(1<<8));printk("寄存器初始化成功\n");return 0;
}
// 定义操作方法结构体变量并赋值
struct file_operations fops = {.open = mycdev_open,.read = mycdev_read,.write = mycdev_write,.unlocked_ioctl=mycdev_ioctl,.release = mycdev_close,
};
static int __init mycdev_init(void)
{
int ret;//1.申请字符设备驱动对象空间cdev=cdev_alloc();if(cdev==NULL){return -EFAULT;}printk("字符设备驱动对象申请成功\n");//2.初始化字符设备驱动对象cdev_init(cdev,&fops);//3.申请设备号if(major==0)//动态申请{ret=alloc_chrdev_region(&devno,minor,3,"myled");if(ret){printk("动态申请设备号失败\n");goto out1;}//为了统一和静态申请设备号的操作major=MAJOR(devno);minor=MINOR(devno);}else//静态指定{ret=register_chrdev_region(MKDEV(major,minor),3,"myled");if(ret){printk("静态申请设备号失败\n");goto out1;}}printk("设备号申请成功\n");//4.注册驱动 ret= cdev_add(cdev,MKDEV(major,minor),3);if(ret){printk("注册驱动失败\n");goto out2;}  printk("注册驱动成功\n");//5.向上提交目录cls=class_create(THIS_MODULE,"led");if(IS_ERR(cls)){printk("向上提交目录失败\n");ret=-PTR_ERR(cls);goto out3;}printk("向上提交目录成功\n");//6.向上提交设备节点int i;for(i=0;i<3;i++){dev=device_create(cls,NULL,MKDEV(major,i),NULL,"myled%d",i);if(IS_ERR(dev)){printk("向上提交设备信息失败\n");ret=-PTR_ERR(dev);goto out4;}}printk("向上提交设备信息成功\n");//寄存器映射以及初始化all_led_init();return 0;
out4:
//销毁提交成功的设备信息for(--i;i>=0;i--){device_destroy(cls,MKDEV(major,i));}//销毁目录class_destroy(cls);
out3:cdev_del(cdev);
out2:unregister_chrdev_region(MKDEV(major,minor),3);
out1:kfree(cdev);return ret;
}static void __exit mycdev_exit(void)
{//取消地址映射iounmap(vir_led1);iounmap(vir_led2);iounmap(vir_rcc);//1.释放设备信息int i;for(i=0;i<3;i++){device_destroy(cls,MKDEV(major,i));}//2.销毁目录class_destroy(cls);//3.注销驱动对象cdev_del(cdev);//4.释放设备号unregister_chrdev_region(MKDEV(major,minor),3);//5.释放对象空间kfree(cdev);}
module_init(mycdev_init);
module_exit(mycdev_exit);
MODULE_LICENSE("GPL");

效果图: 

 

这篇关于2.18通过字符设备驱动分步注册过程实现LED驱动的编写,编写应用程序测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/722855

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组