阅读笔记(SOFT COMPUTING 2018)Seam elimination based on Curvelet for image stitching

本文主要是介绍阅读笔记(SOFT COMPUTING 2018)Seam elimination based on Curvelet for image stitching,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文献:

Wang Z, Yang Z. Seam elimination based on Curvelet for image stitching[J]. Soft Computing, 2018: 1-16.

注:SOFT COMPUTING

大类学科小类学科Top期刊综述期刊
工程技术 3区
COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
计算机:人工智能
3区
COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
计算机:跨学科应用
3区
2017-2018最新影响因子2.367
2017-2018自引率14.90%

摘要

近年来,图像拼接发展迅速。 接缝消除在图像拼接中起着关键作用。 因此,本文提出了一种改进的图像拼接缝消除方法。 首先,注册图像。 然后,提出了基于Curvelet变换的最优焊缝方法来消除煤层。 客观评价指标(PSNR和SSIM)用于评价实验结果中所提方法的性能。 本文还提出了一种评估拼接图像局部质量的新指标。 在该度量下测试三组图像。 实验结果表明,该方法可以有效地消除煤层。

主要的工作

本文提出了一种基于Curvelet变换的改进的焊缝消除方法。 该论文的贡献可归纳如下。

  • (1)采用Curvelet变换来检测拼接图像中的接缝,从而可以更有效地消除接缝。
  • (2)提出了一种称为梯度方差的新度量,用于评估煤层消除质量。

该方法在以下两个方面弥补了研究空白:

  • 一是我们提出了一种有效的接缝消除方法,它提高了拼接图像的质量。
  • 另一个是我们提出的可以很好地评估接缝消除质量的指标。

什么是Curvelet?

Curvelet是一种用于多尺度物体表示的非自适应技术,于1999年提出并在2002年进行了改进(Candes和Guo,2002)。 它是从Ridgelet开发的(Candes和Guo 2002)。 Curvelet已广泛应用于图像处理,如图像去噪(Starck et al.2002),图像增强(Starck et al.2003)和图像融合。

算法流程

实验结果

结论

本文提出了一种改进的图像拼接缝消除方法。 首先注册一对图像。 然后,应用基于Curvelet变换的最优缝合方法来消除缝隙。 结果由PSNR和SSIM评估。 还提出了一种称为梯度方差的新指标来评估消除接缝的质量。 实验结果表明,我们提出的方法优于其他现有方法。 我们未来的工作是优化方法并缩短拼接一对图像所消耗的时间。


ps:我大概浏览了一下内容。对于图像拼接问题,我认为改进并不大,效果较为一般。但对于评价拼接方法的指标,我觉得可以借鉴。

详细 X
没有英汉互译结果
   请尝试网页搜索

这篇关于阅读笔记(SOFT COMPUTING 2018)Seam elimination based on Curvelet for image stitching的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/721891

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

BUUCTF靶场[web][极客大挑战 2019]Http、[HCTF 2018]admin

目录   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 [web][HCTF 2018]admin 考点:弱密码字典爆破 四种方法:   [web][极客大挑战 2019]Http 考点:Referer协议、UA协议、X-Forwarded-For协议 访问环境 老规矩,我们先查看源代码

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓