输入捕获模式测频率PWM输入模式(PWMI)测占空比

2024-02-17 22:52

本文主要是介绍输入捕获模式测频率PWM输入模式(PWMI)测占空比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、概念介绍

输出比较:

比较电路输入的CNT、CCR大小关系 ,在通道引脚输出高低电平

二、*频率知识、测量方法补充 *

N/fc得到标准频率的时长,也就是待测频率的周期

测频法代码实现:修改对射式红外传感器计次(上升沿计次)、定时器外部时钟(1s中断) 

测频法:定时器中断,并记录捕获次数;测周法:捕获中断,并记录定时器次数。

三、输入捕获电路分析如何实现测周法:

异或门其实还是为三相无刷电机服务,三个霍尔传感器检测转子位置,根据转子位置进行换相,在前三个通道接上霍尔传感器,这个定时器就作为无刷电机的接口定时器,去驱动换相电路工作

输入滤波器:避免毛刺

3.1设计成交叉状的目的:

TI1FP1(TI1 Filter Polarity 1) -->IC1<--TI2FP1

TI1FP2-->IC2<--TI2FP2

(1)灵活切换后续捕获电路输入 CH1变成CH2   即一个通道切换两个引脚

(2)把一个引脚的输入,同时映射到两个捕获单元(PWMI模式经典结构) 即两个捕获单元捕获一个引脚

举例:

第一个捕获通道?TI1FP1上升沿触发,用来捕获周期

第二个捕获通道TI1FP2下降沿触发,用来捕获占空比

两个通道同时对一个引脚进行捕获

3.2预分频器(测周法实现)&捕获中断

*设置上升沿触发,分频后的触发信号每来一次,CNT就会向CCR转运一次,又因为CNT是内部的标准时钟驱动的,CNT数值就可以记录两个上升沿之间的时间间隔,也就是周期,取倒数得到频率

上升沿用于触发输入捕获,CNT用于计数计时

捕获中断:同时产生捕获事件,这个事件在状态寄存器置标志位,同时也可以产生中断

3.3应用场景:超声波模块检测电路

3.4细节问题

每次捕获后,把CNT清零,这样下次上升沿再捕获,取出的CNT 才是两个上升沿的时间间隔

用主从触发模式自动完成

四、电路执行细节

 注意:

CNT的值是有上限的(65535=ARRmax),若信号频率太低,CNT计数值会溢出

 从模式的触发源选择:TI1FP1 TI2FP2没有3,4 想用从模式自动清零CNT,只能用通道1和通道2,对于通道3和通道4只能开启捕获中断,手动清零

-->Q:能否外部中断? AS:概念不清,外部中断那是CPU了啊,这里是硬件映射主模式,然后配置从模式

 也可以捕获第二个引脚:TI2FP1 TI2FP2

五、函数学习


/*****初始化输入捕获单元******/
void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct);//只配置一个通道void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct);//配置两个通道(PWMI模式)/*****给输入捕获结构体赋初值*****/
void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct);*****************************选择从模式*********************************/*****选择从模式输入触发源*****/void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);
/*****选择主模式输出触发源*****/
void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource);
/*****选择从模式*****/
void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode);/*****配置分频器*****/ 
结构体里也能配置,一个效果void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC);
void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC);
void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC);
void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC);/*****读取CRR*****/
输入捕获模式下只读,输出比较只写(TIM_SetComparex),函数是不一样的
uint16_t TIM_GetCapture1(TIM_TypeDef* TIMx);
uint16_t TIM_GetCapture2(TIM_TypeDef* TIMx);
uint16_t TIM_GetCapture3(TIM_TypeDef* TIMx);
uint16_t TIM_GetCapture4(TIM_TypeDef* TIMx);

Q&AnS

为什么ARR要大一些?

-->防止N过大计数溢出,为了防止cnt到了某个值就重装了

psc也不能给的太小,防止测量的信号频率过低,导致计数器溢出

注意:

1.滤波器 VS分频器

滤波器计次不会改变信号原有频率,因为滤波器采样频率远远高于信号频率,只会滤除高频噪声,使信号更平滑

分频器对信号本身计次,会改变频率

这里用上升沿触发归零,后边用下降沿不触发归零,两个值一减就是占空比。归零一次是一个周期,从0开始计高电平方便得出占空比,不然还得用1再减一下

2.Fc = 72MHz/(psc+1)

 六、输入捕获模式测频率代码分析

main.c 

为什么PWM那里还是 720-1 IC却要改72-1?

#include "stm32f10x.h"    // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"
#include "IC.h"int main(void)
{OLED_Init();PWM_Init();IC_Init();OLED_ShowString(1,1,"Freq:00000Hz");PWM_SetPreScaler(720-1);             //Freq= 72M / (PSC+1) / 100PWM_SetCompare1(50);                 //Duty = CRR / 100while(1){OLED_ShowNum(1,6,IC_GetFreq(),5);}}

IC.C

#include "stm32f10x.h"                  // Device headervoid IC_Init(void)
{/*****STEP1 开启时钟*****/RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);//TIM2要输出PWM 换成3捕获RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);//TIM3_CH1 在PA6口/*****STEP2 配置GPIO*****/GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU;						GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStructure);/*****STEP3 配置时基单元*****/	TIM_InternalClockConfig(TIM3);TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;TIM_TimeBaseInitStructure.TIM_ClockDivision =TIM_CKD_DIV1;TIM_TimeBaseInitStructure.TIM_CounterMode =TIM_CounterMode_Up ;TIM_TimeBaseInitStructure.TIM_Period = 65536 - 1;//ARRTIM_TimeBaseInitStructure.TIM_Prescaler = 72 - 1 ;//PSC 1MHzTIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;TIM_TimeBaseInit(TIM3,&TIM_TimeBaseInitStructure);/*****STEP 4 输入捕获配置*****/TIM_ICInitTypeDef TIM_ICInitStructure;TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;                     //选择通道TIM_ICInitStructure.TIM_ICFilter = 0xF;                      //配置滤波器参数,数值越大过滤效果越好TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;          //极性选择TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;                 //分频器TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;     //配置数据选择器TIM_ICInit(TIM3,&TIM_ICInitStructure);/*****STEP 5 配置主从触发模式 *****/TIM_SelectInputTrigger(TIM3,TIM_TS_TI1FP1);         //触发源选择TIM_SelectSlaveMode(TIM3,TIM_SlaveMode_Reset);     //配置从模式/*****STEP6 启动定时器*****/TIM_Cmd(TIM3,ENABLE);
}uint32_t IC_GetFreq(void)
{return 1000000 / TIM_GetCapture1(TIM3);      //Fc = 72MHz/(psc+1)
}

现象

10001Hz 

原因:

计数到1000Hz那个数信号刚好跳变,导致数没记上

有朋友说是因为:读取的是N,但实际上计了N+1个数,因为计数器CNT是从0开始计的,所以这里要加一,错,自行探讨

改进:
uint32_t IC_GetFreq(void)
{
    return 1000000 /( TIM_GetCapture1(TIM3)+1;      //Fc = 72MHz/(psc+1)
}

七、PWMI测占空比代码分析

与上一个代码不同的地方:

1.输入捕获初始化需要升级:

两个通达捕获同一个引脚,比较朴素的想法就是再定义一遍结构体参数

通道1 直连输入,上升沿触发 通道2 交叉输入(通道2相当于通道1 的交叉输入结果)下降沿触发

TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;                     //选择通道TIM_ICInitStructure.TIM_ICFilter = 0xF;                      //配置滤波器参数,数值越大过滤效果越好TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;          //极性选择TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;                 //分频器TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_IndirectTI;     //配置数据选择器TIM_ICInit(TIM3,&TIM_ICInitStructure);

简单的办法 (只支持通道1、2之间):

	TIM_PWMIConfig(TIM3,&TIM_ICInitStructure);    //自动把剩下的通道配置成相反的配置

2.占空比函数

uint32_t IC_GetDuty(void)
{return (TIM_GetCapture2(TIM3) + 1) * 100 /(TIM_GetCapture1(TIM3) + 1);
}

3.main变动

/***main 变动***/
OLED_ShowString(2,1,"Duty:00%");/***while 变动***/
OLED_ShowNum(2,6,IC_GetDuty(),2);

八、探究测频率性能

测频率范围 

fc 1MHz Nmax = 65535  最低频率是15Hz左右

要是再想降最低频率限制,PSC加大(这里fc=72M/(PSC+1)就是1M,当fc越小,能够测量的信号频率就越小,所以你要想测频率更小的信号,就可以减小fc,也就是增大PSC值)

频率上限,就是标准频率了,再高,没法测,误差(正负一误差=1/计数值)大,提高上限就要降低PSC或者尝试测频法

这篇关于输入捕获模式测频率PWM输入模式(PWMI)测占空比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719228

相关文章

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

Java捕获ThreadPoolExecutor内部线程异常的四种方法

《Java捕获ThreadPoolExecutor内部线程异常的四种方法》这篇文章主要为大家详细介绍了Java捕获ThreadPoolExecutor内部线程异常的四种方法,文中的示例代码讲解详细,感... 目录方案 1方案 2方案 3方案 4结论方案 1使用 execute + try-catch 记录

Android如何获取当前CPU频率和占用率

《Android如何获取当前CPU频率和占用率》最近在优化App的性能,需要获取当前CPU视频频率和占用率,所以本文小编就来和大家总结一下如何在Android中获取当前CPU频率和占用率吧... 最近在优化 App 的性能,需要获取当前 CPU视频频率和占用率,通过查询资料,大致思路如下:目前没有标准的

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)