人工智能的天花板和认知智能时代的来临

2024-02-17 22:40

本文主要是介绍人工智能的天花板和认知智能时代的来临,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

摘要:5月29日,Science刊登了一篇标题为“人工智能某些领域的核心进展一直停滞不前”的文章,在文章里,作者Matthew Hutson提到:一些多年之前的“老算法”如果经过微调,其性能足以匹敌当前的SOTA(编者注:得分最高的算法)。

  所有的分析结果主要有两种:1、研究员声称的核心创新只是对原算法的微改进;2、新技术与多年前的旧算法在性能上相差不大。

  具体到技术层面,论文对比分析的AI建模方法包括:神经网络剪枝、神经网络推荐算法、深度度量学习、对抗性训练、语言模型。

  他们通过对比81相关篇论文,并在对照条件下对数百个模型进行修剪后,明显发现神经网络剪枝这一领域并没有标准化的基准和指标。换句话说,当前最新论文发表的技术很难进行量化,所以,很难确定该领域在过去的三十年中取得了多少进展。

  对当前排名靠前的几种推荐算法进行了系统分析,发现近几年顶会中提出的18种算法,只有7种能够合理的复现。还有另外6种,用相对简单的启发式方法就能够胜过。剩下的几种,虽然明显优于baselines,但是却打不过微调过的非神经网络线性排名方法。

  研究员声称近十三年深度度量学习(deep metric learning) 领域的目前研究进展和十三年前的基线方法(Contrastive, Triplet) 比较并无实质提高。

  研究员一共指出了现有文献中的三个缺陷:不公平的比较、通过测试集反馈进行训练、不合理的评价指标。

  近期的很多研究都声称他们的对抗训练算法比投影梯度下降算法要好的多,但是经过研究发现,几乎所有最近的算法改进在对抗性训练上的性能改进都可以通过简单地使用“提前停止”来达到。(编者注:所谓“提前停止”,即不进行那么多的训练,换句话说,人们用了各种办法想去解决问题,实际上少训练一些就解决了。)

  作者通过大规模的自动黑箱超参数调优,重新评估了几种流行的体系结构和正则化方法,得出的一个结论是:标准的LSTM体系结构在适当的正则化后,其性能表现优于“近期”的模型。(编者注:老办法还是最好的。)

点评:这样的事实说明了几个问题:

1、业界的浮燥,只是为了达到一个好看的分数,有一篇看起好像很厉害的论文,根本不管其算法在实际应用中是否有效,因为文中所说的很多问题,离开特定的数据,放到实际应用中去检验,立马就能现出原形。

2、总是去追捧那些看上去高大上、深奥、复杂的方法,总觉得只有这样的方法,用了很多的数学公式、方程,才称得上是高水平的研究和成果。我们忘了初心,那就是用尽量简单的方法去解决复杂问题,因此会闹出“提前停止”这种笑话,做了一大堆复杂的事情,结果还不如“少做一点”。不由得让人又想起那个段子,要花上百万设计出机械手去抓取生产线上的空香皂盒,结果用一台风扇放在生产线旁一吹就解决了。是时候仔细想想了,我们大脑真的是用那些复杂的数学方程在解决问题吗?

3、人工智能、机器学习、深度学习真的是顶到天花板了,在原有基础上小修小补已经解决不了问题,把测试分数提高1%、2%实在是没有什么意义了。现在需要的是革命性的突破,需要一种全新的、与深度学习具有本质不同的方法。所谓本质不同,就是深度学习不管多深奥、测试分数多高,都不能解决机器的认知问题,即机器无法知道大千世界及其各种事物的意义,不知道面包可以吃,人要生存必须吃东西,面包可以让人活下去……没有这样的认知,机器永远不可能有高水平的智能。而新的方法,必须在机器认知上向前迈进一步,因此新一代智能,认知智能体系正在到来。全新的智能体系正在到来。下面是认知智能相关体系介绍:

 

认知智能介绍

认知智能是计算机科学的一个分支科学,是智能科学发展的高级阶段,它以人类认知体系为基础,以模仿人类核心能力为目标,以信息的理解、存储、应用为研究方向,以感知信息的深度理解和自然语言信息的深度理解为突破口,以跨学科理论体系为指导&#

这篇关于人工智能的天花板和认知智能时代的来临的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719206

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

智能交通(二)——Spinger特刊推荐

特刊征稿 01  期刊名称: Autonomous Intelligent Systems  特刊名称: Understanding the Policy Shift  with the Digital Twins in Smart  Transportation and Mobility 截止时间: 开放提交:2024年1月20日 提交截止日

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

认知杂谈52

今天分享 有人说的一段争议性的话 I I 1拓展人脉很重要** 咱们活在这世上啊,得明白一件事儿,知识、逻辑能力和实战经验虽然重要,但确实都不是最关键的。真正关键的是要懂得怎么和那些手里有资源的人打交道。人脉那可真是一笔无形的大财富呢。你想想看,有时候一个有影响力的人帮你一把,那效果可比你累死累活干一年都强得多。 I I 就比如说,你要是认识个行业里的大牛,他可能给你介绍个特别好的工

内卷时代无人机培训机构如何做大做强

在当今社会,随着科技的飞速发展,“内卷”一词频繁被提及,反映了各行业竞争日益激烈的现象。对于无人机培训行业而言,如何在这样的时代背景下脱颖而出,实现做大做强的目标,成为每个培训机构必须深思的问题。以下是从八个关键方面提出的策略,旨在帮助无人机培训机构在内卷时代中稳步前行。 1. 精准定位市场需求 深入研究市场:通过市场调研,了解无人机行业的最新趋势、政策导向及未来发展方向。 明确目标

单片机毕业设计基于单片机的智能门禁系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍程序代码部分参考 设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订