【点云】生成有凹凸的平面

2024-02-17 18:20
文章标签 生成 平面 点云 凹凸

本文主要是介绍【点云】生成有凹凸的平面,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 高斯函数
    • 原理
    • 代码
    • 保存
  • 测试
    • 测试1 :领域曲率代码
    • 测试2:高斯曲率代码
  • 加上噪点
    • 测试1
    • 测试2
  • 总结


前言

尝试用一些数据生成有凹凸面的点云。
我们姑且把z轴当成有凹凸的缺陷,x轴和y轴共同组成一个平面。


高斯函数

原理

高斯函数wiki中,我们得知
在这里插入图片描述
其中,σ为标准差,用来控制“钟形”的宽度。
在这里插入图片描述
根据wiki中下面的举例sigma_X = 1;sigma_Y = 2;可以看出,σx=σy时,高斯的水平集是个圆,σx不等于σy时,高斯的水平集是个椭圆。(可以这样想:在平面上的公式,圆和椭圆的区别)

继续往下看:
在这里插入图片描述
在这里插入图片描述

代码

再根据wiki中下面的 Octave 代码,仿写出python代码:

# 导入 numpy 和 open3d 库
import numpy as np
import open3d as o3d# 定义高斯函数的参数
A = 1
x0 = 0
y0 = 0
sigma_X = 1
sigma_Y = 2# 生成 X 和 Y 的坐标网格
X, Y = np.meshgrid(np.arange(-5, 5.1, 0.1), np.arange(-5, 5.1, 0.1))#-5到5,步长为0.1# 创建 open3d 点云对象
pcd = o3d.geometry.PointCloud()# 循环旋转角度
for theta in np.arange(0, np.pi, np.pi / 100): # 0 到 π,步长为 π / 100  #可以改变这个值# 计算高斯函数的系数a = np.cos(theta) ** 2 / (2 * sigma_X ** 2) + np.sin(theta) ** 2 / (2 * sigma_Y ** 2)b = np.sin(2 * theta) / (4 * sigma_X ** 2) - np.sin(2 * theta) / (4 * sigma_Y ** 2)c = np.sin(theta) ** 2 / (2 * sigma_X ** 2) + np.cos(theta) ** 2 / (2 * sigma_Y ** 2)# 计算 Z 的坐标Z = A * np.exp(-(a * (X - x0) ** 2 + 2 * b * (X - x0) * (Y - y0) + c * (Y - y0) ** 2))# 将 X, Y, Z 合并为点云矩阵,形状为 (n, 3)points = np.stack((X, Y, Z), axis=-1)points = points.reshape(-1, 3)# 更新点云的坐标
pcd.points = o3d.utility.Vector3dVector(points)# 添加坐标
coord = o3d.geometry.TriangleMesh.create_coordinate_frame(size=1, origin=[0, 0, 0])#x红色,y绿色,z蓝色
# 可视化点云
o3d.visualization.draw_geometries([pcd, coord])

得到
在这里插入图片描述
若我们改为sigma_X = 1,sigma_Y = 1,则
在这里插入图片描述
发现中间确实为圆,与上述猜想一致。

若我们需要凹陷的缺陷,则改为A=-1即可。
在这里插入图片描述

保存

# 保存点云
o3d.io.write_point_cloud("flaw.pcd",pcd ) 

点云大小如下:
在这里插入图片描述

测试

【最详解】如何进行点云的凹凸缺陷检测(opene3D)
拿出之前写的凹凸检测代码开始测试,首先测试上述这种无噪音的。
记得一定要根据点云的大小改radius = 0.5 #邻域半径,否则一点效果也没有

测试1 :领域曲率代码

参数如下:
在这里插入图片描述
结果如下:
在这里插入图片描述
意外的还算不错。

测试2:高斯曲率代码

也是改了radius =0.5。
在这里插入图片描述
果然结果还是这个更好。

加上噪点

在之前代码的基础上更改如下,并改成椭圆形缺陷。
在这里插入图片描述
结果:
在这里插入图片描述

测试1

在这里插入图片描述

测试2

在这里插入图片描述
发现在针对椭圆形的凹凸缺陷不够灵敏了。

总结

可能在在使用邻近搜索中,用的方法不太好,用的是在球内的点搜索,或许换个方法就可以了。–2024.2.17

这篇关于【点云】生成有凹凸的平面的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/718628

相关文章

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

2、PF-Net点云补全

2、PF-Net 点云补全 PF-Net论文链接:PF-Net PF-Net (Point Fractal Network for 3D Point Cloud Completion)是一种专门为三维点云补全设计的深度学习模型。点云补全实际上和图片补全是一个逻辑,都是采用GAN模型的思想来进行补全,在图片补全中,将部分像素点删除并且标记,然后卷积特征提取预测、判别器判别,来训练模型,生成的像

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp