图表示学习 Graph Representation Learning chapter1 引言

2024-02-17 08:52

本文主要是介绍图表示学习 Graph Representation Learning chapter1 引言,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图表示学习 Graph Representation Learning chapter1 引言

  • 前言
  • 1.1图的定义
    • 1.1.1多关系图
    • 1.1.2特征信息
  • 1.2机器学习在图中的应用
    • 1.2.1 节点分类
    • 1.2.2 关系预测
    • 1.2.3 聚类和组织检测
    • 1.2.4 图分类、回归、聚类

前言

虽然我并不研究图神经网络,但是我认为图高效的表示方式还是值得所有人去学一下的,或许将来觉得这个很有意思呢?

当然啦,这也作为北京大学 图神经网络这门课的课程笔记吧,希望各位批评指教,也希望大家一起进步。

1.1图的定义

在这里插入图片描述
图可以定义为如下结构 G = ( V , E ) \mathcal{G=(V, E)} G=(V,E)
包含节点集 v ∈ V v\in\mathcal{V} vV和边集 ( u , v ) ∈ E , u , v ∈ V (u, v)\in \mathcal{E}, u, v\in \mathcal{V} (u,v)E,u,vV

对于边的表示,可以用邻接矩阵表示 A ∈ R ∣ V ∣ × ∣ V ∣ A\in R^{\mathcal{|V|\times|V|}} ARV×V,如果包含 ( u , v ) ∈ E (u,v)\in \mathcal{E} (u,v)E,则 A [ u , v ] = 1 A[u, v]=1 A[u,v]=1。由此可得无向图的邻接矩阵为对称矩阵,而有向图则不一定。同时,如果我们给边带上权重,则 A [ u , v ] = r ∈ R A[u,v]=r\in R A[u,v]=rR

1.1.1多关系图

简单来说就是我们可以规定有多种边,这时,边表示为 ( u , τ , v ) ∈ E \mathcal{(u,\tau,v)\in E} (u,τ,v)E,其中 τ \tau τ为我们规定的边的类型。这时对于每一个类型,我们都可以构建一个邻接矩阵 A τ A_\tau Aτ。把所有邻接矩阵合并为一个邻接矩阵向量,可以表示为 A ∈ R ∣ V ∣ × ∣ R ∣ × ∣ V ∣ \mathcal{A}\in \bold{R}^{\mathcal{|V|\times|R|\times|V|}} ARV×R×V,其中 R \mathcal{R} R为类型的集合。

下面介绍两类多关系图
异质图在这一类图中,节点也被分类,于是点集可以划分为完全不相交的集合的并集。 V = V 1 ∪ V 2 ∪ . . . ∪ V k , V i ∩ V j = ∅ , ∀ i ≠ j \mathcal{V=V_1\cup V_2 \cup ... \cup V_k, V_i\cap V_j=\empty, \forall i\neq j} V=V1V2...Vk,ViVj=,i=j
图中的边通常根据节点的类型满足某些限制,如只连接同一类点之类的。

多路图我们假设一个图分为k层,节点在每一层都有相同的,这时我们认为每一层表达某个特殊的种类,于是我们可以有层内的边,也可以有层间的边。

1.1.2特征信息

为表达节点级别的信息,我们可以用这样 X ∈ R ∣ V ∣ × m \mathcal{X\in R^{|V|\times m}} XRV×m

1.2机器学习在图中的应用

1.2.1 节点分类

任务描述为,根据一幅图,给每个节点一个标签 y u y_u yu,其中训练数据是我们会给定训练集中点的标签 V t r a i n ⊂ V \mathcal{V_{train}\subset V} VtrainV,这训练集可能是整个图中的一个小的子集,也有可能是大部分节点(让我们泛化不连接的节点)。

这任务不能简单理解为监督学习,最重要的不同是,图中的每个节点并非独立同分布的。对于传统的监督学习,我们通常要求采样的每个数据点都是独立的,否则我们需要对数据点之间的联系进行建模。同时我们也会要求这些采样的数据点是同分布的,否则我们无法保证模型的泛化性。而节点分类问题并不满足该假设,因为我们是在对互相联系的点进行建模。

例如,我们可以考虑节点间的同质性(如相邻的节点很有可能是一类的)、节点局部的结构等价性等。

1.2.2 关系预测

也成为连接预测、关系图补全等。

任务描述为对于一个图,我们给定一部分边集,作为训练集 V t r a i n \mathcal{V_{train}} Vtrain,我们的目的是补全这个图的边。该任务的复杂度高度依赖于我们所验证的图的数据类型。

这一问题实际上模糊了监督学习和非监督学习,因为他需要从已有的知识中获得增益。

1.2.3 聚类和组织检测

如果说前两个任务更像监督学习,该任务则是无监督学习。

1.2.4 图分类、回归、聚类

这篇关于图表示学习 Graph Representation Learning chapter1 引言的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/717283

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件