01 _ 可见性、原子性和有序性问题:并发编程Bug的源头

2024-02-17 05:48

本文主要是介绍01 _ 可见性、原子性和有序性问题:并发编程Bug的源头,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果你细心观察的话,你会发现,不管是哪一门编程语言,并发类的知识都是在高级篇里。换句话说,这块知识点其实对于程序员来说,是比较进阶的知识。我自己这么多年学习过来,也确实觉得并发是比较难的,因为它会涉及到很多的底层知识,比如若你对操作系统相关的知识一无所知的话,那去理解一些原理就会费些力气。这是我们整个专栏的第一篇文章,我说这些话的意思是如果你在中间遇到自己没想通的问题,可以去查阅资料,也可以在评论区找我,以保证你能够跟上学习进度。

你我都知道,编写正确的并发程序是一件极困难的事情,并发程序的Bug往往会诡异地出现,然后又诡异地消失,很难重现,也很难追踪,很多时候都让人很抓狂。但要快速而又精准地解决“并发”类的疑难杂症,你就要理解这件事情的本质,追本溯源,深入分析这些Bug的源头在哪里。

那为什么并发编程容易出问题呢?它是怎么出问题的?今天我们就重点聊聊这些Bug的源头。

并发程序幕后的故事

这些年,我们的CPU、内存、I/O设备都在不断迭代,不断朝着更快的方向努力。但是,在这个快速发展的过程中,有一个核心矛盾一直存在,就是这三者的速度差异。CPU和内存的速度差异可以形象地描述为:CPU是天上一天,内存是地上一年(假设CPU执行一条普通指令需要一天,那么CPU读写内存得等待一年的时间)。内存和I/O设备的速度差异就更大了,内存是天上一天,I/O设备是地上十年。

程序里大部分语句都要访问内存,有些还要访问I/O,根据木桶理论(一只水桶能装多少水取决于它最短的那块木板),程序整体的性能取决于最慢的操作——读写I/O设备,也就是说单方面提高CPU性能是无效的。

为了合理利用CPU的高性能,平衡这三者的速度差异,计算机体系结构、操作系统、编译程序都做出了贡献,主要体现为:

  1. CPU增加了缓存,以均衡与内存的速度差异;
  2. 操作系统增加了进程、线程,以分时复用CPU,进而均衡CPU与I/O设备的速度差异;
  3. 编译程序优化指令执行次序,使得缓存能够得到更加合理地利用。

现在我们几乎所有的程序都默默地享受着这些成果,但是天下没有免费的午餐,并发程序很多诡异问题的根源也在这里。

源头之一:缓存导致的可见性问题

在单核时代,所有的线程都是在一颗CPU上执行,CPU缓存与内存的数据一致性容易解决。因为所有线程都是操作同一个CPU的缓存,一个线程对缓存的写,对另外一个线程来说一定是可见的。例如在下面的图中,线程A和线程B都是操作同一个CPU里面的缓存,所以线程A更新了变量V的值,那么线程B之后再访问变量V,得到的一定是V的最新值(线程A写过的值)。

CPU缓存与内存的关系图

一个线程对共享变量的修改,另外一个线程能够立刻看到,我们称为可见性

多核时代,每颗CPU都有自己的缓存,这时CPU缓存与内存的数据一致性就没那么容易解决了,当多个线程在不同的CPU上执行时,这些线程操作的是不同的CPU缓存。比如下图中,线程A操作的是CPU-1上的缓存,而线程B操作的是CPU-2上的缓存,很明显,这个时候线程A对变量V的操作对于线程B而言就不具备可见性了。这个就属于硬件程序员给软件程序员挖的“坑”。

多核CPU的缓存与内存关系图

下面我们再用一段代码来验证一下多核场景下的可见性问题。下面的代码,每执行一次add10K()方法,都会循环10000次count+=1操作。在calc()方法中我们创建了两个线程,每个线程调用一次add10K()方法,我们来想一想执行calc()方法得到的结果应该是多少呢?

public class Test {private long count = 0;private void add10K() {int idx = 0;while(idx++ < 10000) {count += 1;}}public static long calc() {final Test test = new Test();// 创建两个线程,执行add()操作Thread th1 = new Thread(()->{test.add10K();});Thread th2 = new Thread(()->{test.add10K();});// 启动两个线程th1.start();th2.start();// 等待两个线程执行结束th1.join();th2.join();return count;}
}

直觉告诉我们应该是20000,因为在单线程里调用两次add10K()方法,count的值就是20000,但实际上calc()的执行结果是个10000到20000之间的随机数。为什么呢?

我们假设线程A和线程B同时开始执行,那么第一次都会将 count=0 读到各自的CPU缓存里,执行完 count+=1 之后,各自CPU缓存里的值都是1,同时写入内存后,我们会发现内存中是1,而不是我们期望的2。之后由于各自的CPU缓存里都有了count的值,两个线程都是基于CPU缓存里的 count 值来计算,所以导致最终count的值都是小于20000的。这就是缓存的可见性问题。

循环10000次count+=1操作如果改为循环1亿次,你会发现效果更明显,最终count的值接近1亿,而不是2亿。如果循环10000次,count的值接近20000,原因是两个线程不是同时启动的,有一个时差。

变量count在CPU缓存和内存的分布图

源头之二:线程切换带来的原子性问题

由于IO太慢,早期的操作系统就发明了多进程,即便在单核的CPU上我们也可以一边听着歌,一边写Bug,这个就是多进程的功劳。

操作系统允许某个进程执行一小段时间,例如50毫秒,过了50毫秒操作系统就会重新选择一个进程来执行(我们称为“任务切换”),这个50毫秒称为“时间片”。

线程切换示意图

在一个时间片内,如果一个进程进行一个IO操作,例如读个文件,这个时候该进程可以把自己标记为“休眠状态”并出让CPU的使用权,待文件读进内存,操作系统会把这个休眠的进程唤醒,唤醒后的进程就有机会重新获得CPU的使用权了。

这里的进程在等待IO时之所以会释放CPU使用权,是为了让CPU在这段等待时间里可以做别的事情,这样一来CPU的使用率就上来了;此外,如果这时有另外一个进程也读文件,读文件的操作就会排队,磁盘驱动在完成一个进程的读操作后,发现有排队的任务,就会立即启动下一个读操作,这样IO的使用率也上来了。

是不是很简单的逻辑?但是,虽然看似简单,支持多进程分时复用在操作系统的发展史上却具有里程碑意义,Unix就是因为解决了这个问题而名噪天下的。

早期的操作系统基于进程来调度CPU,不同进程间是不共享内存空间的,所以进程要做任务切换就要切换内存映射地址,而一个进程创建的所有线程,都是共享一个内存空间的,所以线程做任务切换成本就很低了。现代的操作系统都基于更轻量的线程来调度,现在我们提到的“任务切换”都是指“线程切换”。

Java并发程序都是基于多线程的,自然也会涉及到任务切换,也许你想不到,任务切换竟然也是并发编程里诡异Bug的源头之一。任务切换的时机大多数是在时间片结束的时候,我们现在基本都使用高级语言编程,高级语言里一条语句往往需要多条CPU指令完成,例如上面代码中的count += 1,至少需要三条CPU指令。

  • 指令1:首先,需要把变量count从内存加载到CPU的寄存器;
  • 指令2:之后,在寄存器中执行+1操作;
  • 指令3:最后,将结果写入内存(缓存机制导致可能写入的是CPU缓存而不是内存)。

操作系统做任务切换,可以发生在任何一条CPU指令执行完,是的,是CPU指令,而不是高级语言里的一条语句。对于上面的三条指令来说,我们假设count=0,如果线程A在指令1执行完后做线程切换,线程A和线程B按照下图的序列执行,那么我们会发现两个线程都执行了count+=1的操作,但是得到的结果不是我们期望的2,而是1。

非原子操作的执行路径示意图

我们潜意识里面觉得count+=1这个操作是一个不可分割的整体,就像一个原子一样,线程的切换可以发生在count+=1之前,也可以发生在count+=1之后,但就是不会发生在中间。我们把一个或者多个操作在CPU执行的过程中不被中断的特性称为原子性。CPU能保证的原子操作是CPU指令级别的,而不是高级语言的操作符,这是违背我们直觉的地方。因此,很多时候我们需要在高级语言层面保证操作的原子性。

源头之三:编译优化带来的有序性问题

那并发编程里还有没有其他有违直觉容易导致诡异Bug的技术呢?有的,就是有序性。顾名思义,有序性指的是程序按照代码的先后顺序执行。编译器为了优化性能,有时候会改变程序中语句的先后顺序,例如程序中:“a=6;b=7;”编译器优化后可能变成“b=7;a=6;”,在这个例子中,编译器调整了语句的顺序,但是不影响程序的最终结果。不过有时候编译器及解释器的优化可能导致意想不到的Bug。

在Java领域一个经典的案例就是利用双重检查创建单例对象,例如下面的代码:在获取实例getInstance()的方法中,我们首先判断instance是否为空,如果为空,则锁定Singleton.class并再次检查instance是否为空,如果还为空则创建Singleton的一个实例。

public class Singleton {static Singleton instance;static Singleton getInstance(){if (instance == null) {synchronized(Singleton.class) {if (instance == null)instance = new Singleton();}}return instance;}
}

假设有两个线程A、B同时调用getInstance()方法,他们会同时发现 instance == null ,于是同时对Singleton.class加锁,此时JVM保证只有一个线程能够加锁成功(假设是线程A),另外一个线程则会处于等待状态(假设是线程B);线程A会创建一个Singleton实例,之后释放锁,锁释放后,线程B被唤醒,线程B再次尝试加锁,此时是可以加锁成功的,加锁成功后,线程B检查 instance == null 时会发现,已经创建过Singleton实例了,所以线程B不会再创建一个Singleton实例。

这看上去一切都很完美,无懈可击,但实际上这个getInstance()方法并不完美。问题出在哪里呢?出在new操作上,我们以为的new操作应该是:

  1. 分配一块内存M;
  2. 在内存M上初始化Singleton对象;
  3. 然后M的地址赋值给instance变量。

但是实际上优化后的执行路径却是这样的:

  1. 分配一块内存M;
  2. 将M的地址赋值给instance变量;
  3. 最后在内存M上初始化Singleton对象。

优化后会导致什么问题呢?我们假设线程A先执行getInstance()方法,当执行完指令2时恰好发生了线程切换,切换到了线程B上;如果此时线程B也执行getInstance()方法,那么线程B在执行第一个判断时会发现 instance != null ,所以直接返回instance,而此时的instance是没有初始化过的,如果我们这个时候访问 instance 的成员变量就可能触发空指针异常。

双重检查创建单例的异常执行路径

总结

要写好并发程序,首先要知道并发程序的问题在哪里,只有确定了“靶子”,才有可能把问题解决,毕竟所有的解决方案都是针对问题的。并发程序经常出现的诡异问题看上去非常无厘头,但是深究的话,无外乎就是直觉欺骗了我们,只要我们能够深刻理解可见性、原子性、有序性在并发场景下的原理,很多并发Bug都是可以理解、可以诊断的

在介绍可见性、原子性、有序性的时候,特意提到缓存导致的可见性问题,线程切换带来的原子性问题,编译优化带来的有序性问题,其实缓存、线程、编译优化的目的和我们写并发程序的目的是相同的,都是提高程序性能。但是技术在解决一个问题的同时,必然会带来另外一个问题,所以在采用一项技术的同时,一定要清楚它带来的问题是什么,以及如何规避

我们这个专栏在讲解每项技术的时候,都会尽量将每项技术解决的问题以及产生的问题讲清楚,也希望你能够在这方面多思考、多总结。

课后思考

常听人说,在32位的机器上对long型变量进行加减操作存在并发隐患,到底是不是这样呢?现在相信你一定能分析出来。

欢迎在留言区与我分享你的想法,也欢迎你在留言区记录你的思考过程。感谢阅读,如果你觉得这篇文章对你有帮助的话,也欢迎把它分享给更多的朋友。

转自:https://time.geekbang.org

这篇关于01 _ 可见性、原子性和有序性问题:并发编程Bug的源头的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/716829

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

oracle数据库索引失效的问题及解决

《oracle数据库索引失效的问题及解决》本文总结了在Oracle数据库中索引失效的一些常见场景,包括使用isnull、isnotnull、!=、、、函数处理、like前置%查询以及范围索引和等值索引... 目录oracle数据库索引失效问题场景环境索引失效情况及验证结论一结论二结论三结论四结论五总结ora

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题

《解决mybatis-plus-boot-starter与mybatis-spring-boot-starter的错误问题》本文主要讲述了在使用MyBatis和MyBatis-Plus时遇到的绑定异常... 目录myBATis-plus-boot-starpythonter与mybatis-spring-b

mysql主从及遇到的问题解决

《mysql主从及遇到的问题解决》本文详细介绍了如何使用Docker配置MySQL主从复制,首先创建了两个文件夹并分别配置了`my.cnf`文件,通过执行脚本启动容器并配置好主从关系,文中还提到了一些... 目录mysql主从及遇到问题解决遇到的问题说明总结mysql主从及遇到问题解决1.基于mysql

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

如何安装HWE内核? Ubuntu安装hwe内核解决硬件太新的问题

《如何安装HWE内核?Ubuntu安装hwe内核解决硬件太新的问题》今天的主角就是hwe内核(hardwareenablementkernel),一般安装的Ubuntu都是初始内核,不能很好地支... 对于追求系统稳定性,又想充分利用最新硬件特性的 Ubuntu 用户来说,HWEXBQgUbdlna(Har

MAVEN3.9.x中301问题及解决方法

《MAVEN3.9.x中301问题及解决方法》本文主要介绍了使用MAVEN3.9.x中301问题及解决方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录01、背景02、现象03、分析原因04、解决方案及验证05、结语本文主要是针对“构建加速”需求交

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

Nginx、Tomcat等项目部署问题以及解决流程

《Nginx、Tomcat等项目部署问题以及解决流程》本文总结了项目部署中常见的four类问题及其解决方法:Nginx未按预期显示结果、端口未开启、日志分析的重要性以及开发环境与生产环境运行结果不一致... 目录前言1. Nginx部署后未按预期显示结果1.1 查看Nginx的启动情况1.2 解决启动失败的