数据挖掘进阶之序列模式分析算法GSP的实现

2024-02-16 20:48

本文主要是介绍数据挖掘进阶之序列模式分析算法GSP的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

序列模式分析算法GSP的实现

一、算法简介 

      序列模式定义:给定一个由不同序列组成的集合,其中,每个序列由不同的元素按顺序有序排列,每个元素由不同项目组成,同时给定一个用户指定的最小支持度阈值,序列模式挖掘就是找出所有的频繁子序列,即该子序列在序列集中的出现频率不低于用户指定的最小支持度阈值。

GSP是序列模式挖掘的一种算法。其主要实现步骤描述如下:

1)扫描序列数据库,得到长度为1的序列模式L1,作为初始的种子集

L1 C2 L2 C3 L3 C4 L4  ……

2)根据长度为i 的种子集Li 通过连接操作剪切操作生成长度为i+1的候选序列模式Ci+1;

3)然后扫描序列数据库,计算每个候选序列模式的支持数,产生长度为i+1的序列模式Li+1,并将Li+1作为新的种子集。 

4)重复第三步,直到没有新的序列模式或新的候选序列模式产生为止。 

      产生候选序列模式主要分两步:

       1)连接阶段:如果去掉序列模式s1的第一个项目与去掉序列模式s2的最后一个项目所得到的序列相同,则可以将s1于s2进行连接,即将s2的最后一个项目添加到s1中。其中最后一个项目集是否为合并在原来s1的最后一个项目集,还是自成一个新的项目集,取决于s2的最后一个项目是否原来就是一个单独的项目集

      2)剪切阶段:依据“不频繁子序列的超集也不频繁"。若某候选序列模式的某个子序列不是频繁序列模式,则此候选序列模式不可能是频繁序列模式,将它从候选序列模式中删除。

       候选序列模式的支持度计算:对于给定的候选序列模式集合C,扫描序列数据库,对于其中的每一条序列d,找出集合C中被d所包含的所有候选序列模式,并增加其支持度计数。

      例子:下表演示了如何从长度为3的序列模式产生长度为4的候选序列模式。

 

       在连接步中,种子序列<(1,2) 3>和种子序列<2 (3,4)>连接可产生候选4序列<(1,2) (3,4)>;种子序列<2 3 5>连接可产生候选4序列<(1,2) 3 5>。其余的序列均不满足连接条件。在剪枝步中,候选4序列<(1,2) 3 5>被剪去,因为其连续子序列<1,3,5>不包含在频繁3序列集合L3中。

二、算法的设计和实现 

      本算法采用Java实现,主要根据序列模式的情况,序列模式挖掘中共涉及到3个对象:序列、元素和项目。

      算法共有5个类:

       GSP类:算法核心类,GSP算法的核心操作:连接和剪枝操作都在这里实现,在使用该算法时,也是需要通过使用该类的方法来实现GSP算法。

      Sequence类:序列类,该类封装了序列的基本信息和基本操作,实现了对序列间的比较以及序列中的项目集操作。

       Element类:元素类,在序列模式中元素也就是项目集,项目集中包含了项目,在本算法实现中,元素类中含有一个项目集属性,用于表示项目集,在使用时也是使用该属性来表示项目集,另外,在该类中还封装了对项目的操作以及一些其他操作。

       SeqDB类:该类用于从数据库中扫描获取序列,本算法主要用于模拟实现,所以在程序中已经初始化了序列。

       GSPTest类:测试类,使用JUnit对算法进行单元测试,本文附的代码只含有对于实现GSP算法的方法测试。

       由于程序中附带了对方法的注释,这里对各个方法的原理和实现就不作介绍。

三、实验结果 

(一)实验数据 

<{1 5}{2}{3}{4}>

<{1}{3}{4}{3 5}>

<{1}{2}{3}{4}>

<{1}{3}{5}>

<{4}{5}>

(二)程序输出 

最小支持度计数为:2 

输入的序列集合为: 

[<(1,5) 2 3 4>, <1 3 4 (3,5)>, <1 2 3 4>, <1 3 5>, <4 (4,5)>] 

序列模式L(1) 为:[<2>, <4>, <1>, <3>, <5>] 

................................................. 

剪枝前候选集的大小为:40 候选集c为:[<(2,2)>, <2 2>, <(2,4)>, <2 4>, <4 2>, <(1,2)>, <2 1>, <1 2>, <(2,3)>, <2 3>, <3 2>, <(2,5)>, <2 5>, <5 2>, <(4,4)>, <4 4>, <(1,4)>,

 <4 1>, <1 4>, <(3,4)>, <4 3>, <3 4>, <(4,5)>, <4 5>, <5 4>, <(1,1)>, <1 1>, <(1,3)>, <1 3>, <3 1>, <(1,5)>, <1 5>, <5 1>, <(3,3)>, 

<3 3>, <(3,5)>, <3 5>, <5 3>, <(5,5)>, <5 5>] 

剪枝后候选集的大小为:40 候选集c为:[<(2,2)>, <2 2>, <(2,4)>, <2 4>, <4 2>, <(1,2)>, <2 1>, <1 2>, <(2,3)>, <2 3>, <3 2>, <(2,5)>, <2 5>, <5 2>, <(4,4)>, <4 4>, <(1,4)>,

 <4 1>, <1 4>, <(3,4)>, <4 3>, <3 4>, <(4,5)>, <4 5>, <5 4>, <(1,1)>, <1 1>, <(1,3)>, <1 3>, <3 1>, <(1,5)>, <1 5>, <5 1>, <(3,3)>,

 <3 3>, <(3,5)>, <3 5>, <5 3>, <(5,5)>, <5 5>] 

序列模式L(2) 为:[<2 4>, <1 2>, <2 3>, <1 4>, <3 4>, <4 5>, <1 3>, <1 5>, <3 5>] 

................................................. 

剪枝前候选集的大小为:18 候选集c为:[<1 (2,4)>, <1 2 4>, <2 (4,5)>, <2 4 5>, <1 (2,3)>, <1 2 3>, <2 (3,4)>, <2 3 4>, <2 (3,5)>, <2 3 5>, <1 (4,5)>, <1 4 5>, <3 (4,5)>, 

<3 4 5>, <1 (3,4)>, <1 3 4>, <1 (3,5)>, <1 3 5>] 

剪枝后候选集的大小为:7 候选集c为:[<1 2 4>, <1 2 3>, <2 3 4>, <1 4 5>, <3 4 5>, <1 3 4>, <1 3 5>] 

序列模式L(3) 为:[<1 2 4>, <1 2 3>, <2 3 4>, <1 3 4>, <1 3 5>] 

................................................. 

剪枝前候选集的大小为:2 候选集c为:[<1 2 (3,4)>, <1 2 3 4>] 

剪枝后候选集的大小为:1 候选集c为:[<1 2 3 4>] 

序列模式L(4) 为:[<1 2 3 4>] 

................................................. 

计算花费时间60毫秒! 

四、程序源代码 

有关源码请点击下载

这篇关于数据挖掘进阶之序列模式分析算法GSP的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/715664

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi