nyoj216A problem is easy(数学题)

2024-02-16 11:18

本文主要是介绍nyoj216A problem is easy(数学题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A problem is easy

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 3
描述
When Teddy was a child , he was always thinking about some simple math problems ,such as “What it’s 1 cup of water plus 1 pile of dough ..” , “100 yuan buy 100 pig” .etc..

One day Teddy met a old man in his dream , in that dream the man whose name was“RuLai” gave Teddy a problem :

Given an N , can you calculate how many ways to write N as i * j + i + j (0 < i <= j) ?

Teddy found the answer when N was less than 10…but if N get bigger , he found it was too difficult for him to solve.
Well , you clever ACMers ,could you help little Teddy to solve this problem and let him have a good dream ?
输入
The first line contain a T(T <= 2000) . followed by T lines ,each line contain an integer N (0<=N <= 10^11).
输出
For each case, output the number of ways in one line
样例输入
2
1
3
样例输出
0
1
 
 
#include<stdio.h>
#include<math.h>
int main()
{int n,i,j,sum,T;scanf("%d",&T);while(T--){sum=0;scanf("%d",&n);for(i=2;i<=sqrt(n+1);i++){if((n+1)%i==0)sum++;}printf("%d\n",sum);}return 0;
}
//n=i*j+i+j等价于(n+1)=(i+1)*(j+1)
//所以这道题就是求 n+1 大于2的因子的个数 


这篇关于nyoj216A problem is easy(数学题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/714356

相关文章

SpringBoot集成图片验证码框架easy-captcha的详细过程

《SpringBoot集成图片验证码框架easy-captcha的详细过程》本文介绍了如何将Easy-Captcha框架集成到SpringBoot项目中,实现图片验证码功能,Easy-Captcha是... 目录SpringBoot集成图片验证码框架easy-captcha一、引言二、依赖三、代码1. Ea

SpringBoot整合easy-es的详细过程

《SpringBoot整合easy-es的详细过程》本文介绍了EasyES,一个基于Elasticsearch的ORM框架,旨在简化开发流程并提高效率,EasyES支持SpringBoot框架,并提供... 目录一、easy-es简介二、实现基于Spring Boot框架的应用程序代码1.添加相关依赖2.添

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

LibSVM学习(六)——easy.py和grid.py的使用

我们在“LibSVM学习(一)”中,讲到libSVM有一个tools文件夹,里面包含有四个python文件,是用来对参数优选的。其中,常用到的是easy.py和grid.py两个文件。其实,网上也有相应的说明,但很不系统,下面结合本人的经验,对使用方法做个说明。        这两个文件都要用python(可以在http://www.python.org上下载到,需要安装)和绘图工具gnup

11991 - Easy Problem from Rujia Liu?

题意: 输入一串整型数列,再输入两个数k,v,输出第k个v的序号。不存在则输出0,如第一个样例 8 41 3 2 2 4 3 2 11 3 //第1个3,序号为2,输出22 4 //第2个4,不存在,输出03 2 //第3个2,序号为7,输出74 2 思路: struct num {

【开发工具】开发过程中,怎么通过Easy JavaDoc快速生成注释。

文章目录 引言什么是Easy JavaDoc?Easy JavaDoc用来干什么?如何使用Easy JavaDoc?安装Easy JavaDoc配置Easy JavaDoc使用Easy JavaDoc生成注释 Easy JavaDoc与IDEA自带注释的区别IDEA自带注释Easy JavaDoc Easy JavaDoc的优缺点优点缺点 步骤 1:打开设置步骤 2:找到Easy JavaD

HDU 1016 Prime Ring Problem (深搜)

OJ题目 : click here ~~ 大概题意:n个数,形成一个环,使得相邻两个数的和为素数。以1开始,按字典序输出序列。 很简单的深搜。 AC_CODE int n;int visit[22];int num[22];int len;bool Is_prime(int x){for(int i = 2;i*i <= x;i++)if(x%i == 0) return

LVM 'Can’t open /dev/sdb1 exclusively. Mounted filesystem?' Problem

在将几块盘做LVM时,遇到一个之前都没遇到过的问题: root@ubuntu:~# pvcreate /dev/sdc1Can't open /dev/sdc1 exclusively. Mounted filesystem? 首先第一反应就是查看这个分区是否已经在使用了,但是没有。 查看硬盘的一些信息: root@ubuntu:~# cat /proc/partitionsmajo

easy简化封装

//confirm function Confirm(msg, control) {$.messager.confirm('确认', msg, function (r) {if (r) {eval(control.toString().slice(11));}});return false;}//loadfunction Load() {$("<div class=\"datagrid-ma