LibSVM学习(六)——easy.py和grid.py的使用

2024-09-08 12:08
文章标签 学习 使用 py libsvm easy grid

本文主要是介绍LibSVM学习(六)——easy.py和grid.py的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  我们在“LibSVM学习(一)”中,讲到libSVM有一个tools文件夹,里面包含有四个python文件,是用来对参数优选的。其中,常用到的是easy.py和grid.py两个文件。其实,网上也有相应的说明,但很不系统,下面结合本人的经验,对使用方法做个说明。

       这两个文件都要用python(可以在http://www.python.org上下载到,需要安装)和绘图工具gnuplot可以在ftp://ftp.gnuplot.info/pub/gnuplot/上下载,不需要安装)。假设python安装在d:/libsvm/tools/python26下,而gnuplot解压到d:/libsvm/tools/gnuplotlibsvm放在了d:/libsvm/program中(这时easy.py和grid.py文件的目录为d:/libsvm/program/tools)。另外,需要注意的是版本,我的是python 2.6、gnuplot 4.2 libsvm 2.89,操作系统是WINXP

 

1. grid.py使用方法

   文件grid.py是对C-SVC的参数c和γ做优选的,原理也是网格遍历,假设我们要对目录d:/libsvm/program/tools下的样本文件heart_scale做优选,其具体用法为:

      

       第一步:打开d:/libsvm/program下的tools文件夹,找到grid.py文件。用python打开(不能双击,而要右键选择“Edit with IDLE”),修改svmtrain_exe和gnuplot_exe的路径。

                              svmtrain_exe = r"D:/libSVM/program/svm-train.exe"

                              gnuplot_exe = r"D:/libSVM/gnuplot/pgnuplot.exe"

       (这里面有一个是对非win32的,可以不用改,只改# example for windows下的就可以了)

      第二步:运行cmd,进入dos环境,定位到d:/libsvm/program/tools文件夹,这里是放置grid.py的地方。怎么定位可以参看第一节。

      第三步:输入以下命令:

                                          d:/libsvm/python26/python grid.py heart_scale

       你就会看到dos窗口中飞速乱串的[local]数据,以及一个gnuplot的动态绘图窗口。大约过10秒钟,就会停止。Dos窗口中的[local]数据时局部最优值,这个不用管,直接看最后一行:

                                          2048.0 0.0001220703125 84.0741

       其意义表示:C = 2048.0;γ=0.0001220703125(γ是哪个参数?参看LibSVM学习(三)中svmtrain的参数说明);交叉验证精度CV Rate = 84.0741%,这就是最优结果。

      第四步:打开目录d:/libsvm/program/tools,我们可以看到新生成了两个文件:heart_scale.out和heart_scale.png,第一个文件就是搜索过程中的[local]和最优数据,第二文件就是gnuplot图像。

 

       现在,grid.py已经运行完了,你可以把最优参数输入到svmtrain中进行训练了。当然了,你在当中某一步很可能出现问题,不过不要紧,我也不是一下子成功的,摸索了半天才成功。下面就需要注意的问题说明一下:

        1)grid.py和svm-train的版本要统一,也就是说你不能用2.6的grid.py去调用2.89的svm-train。

        2)你的目录中如果有空格,比如d:/program files/ libsvm/...,那么无论是在第一步还是第二步,请把目录改成d:/progra~1/ libsvm/...

        3) 第三步的命令问题。首先要看你定位到哪个目录,那么其下的文件就不需要带路径,否则就要带。像我们上面的命令,我当前的目录是d:/libsvm/program/tools,那么其下的easy.py和heart_scale文件就不需要加路径,而python.exe是在d:/libsvm/python26/下,因此不在当前目录下,所以要加路径。比如,当我首先用dos定位到d:/libsvm/python26时,其命令就可以改成:

 

                     python  d:/libsvm/program/tools/grid.py  d:/libsvm/program/tools/heart_scale

 

       总起来说,命令为python 目标文件 样本文件,其原则是要让系统找得到文件。假如系统提示你“不是内部或外部命令”,说明你python的路径错误,而如果是‘not found file’的提示,很可能是其他两个文件路径错误。

        4)假如,你仍旧出现问题,那么请换一下python或者gnuplot的版本,目前python最新版本是3.1,但是好像会出问题,老一点的版本2.42.5的兼容性会更好。

 

 

2. easy.py使用方法

 

 

    文件easy.py对样本文件做了“一条龙服务”,从参数优选,到文件预测。因此,其对grid.py、svm-train、svm-scale和svm-predict都进行了调用(当然还有必须的python和gnuplot)。因此,运行easy.py需要保证这些文件的路径都要正确。当然还需要样本文件和预测文件,这里样本文件还是用heart_scale,预测文件我们复制一份然后改名heart_test,下面说一下使用方法:

 

    第一步:打开easy.py,修改# example for windows下的几个路径:  

6.1

   第二步:运行cmd,进入dos环境,定位到放置easy.py的目录d:/libsvm/program/tools。

   第三步:输入命令:

                    d:/libsvm/python26/python easy.py heart_scale heat_test

           你就会看到一个gnuplot的动态绘图窗口。大约20s以后停止,dos窗口显示为:

 

                                   Scaling training data...

                                   Cross validation...

                                   Best c=2048.0, g=0.0001220703125 CV rate=84.0741

                                   Training...

                                   Output model: heart_scale.model

                                   Scaling testing data...

                                   Testing...

                                   Accuracy = 85.1852% (230/270) (classification)

                                   Output prediction: heart_test.predict

    这就是最终预测结果,可以看到第三行就是调用grid.py的结果。在d:/libsvm/program/tools下你会看到又多了7个文件,都是以前我们碰到的过程文件,都可以用记事本打开。

 

3. 常见的问题解析:

    1)

            Scaling training data...
              Cross validation...
              Traceback (most recent call last):
              File "easy.py", line 61, in ?
              c,g,rate = map(float,last_line.split())
              ValueError: need more than 0 values to unpack

       [解析] 说明你的grid.py运行出现错误,你可以参照第一部分“grid.py使用方法”运行一下就会发现问题。另外,有的说是相对路径的问题,建议找到easy.py的以下部分:

       cmd = "%s -svmtrain %s -gnuplot %s %s" % (grid_py, svmtrain_exe, gnuplot_exe, scaled_file)
改成
          cmd = "%s %s -svmtrain %s -gnuplot %s %s" % (python_path, grid_py, svmtrain_exe, gnuplot_exe, scaled_file)

 

     2)

            Traceback (most recent call last)
              File "grid.py", line 349, in ?
              main()
              File "grid.py", line 344, in main
              redraw(db)
              File "grid.py", line 132, in redraw
              gnuplot.write("set term windows/n")
              IOError [Errno 22] Invalid argument
       
[解析说明你的gnuplot.exe在调用过程中出现问题,要么是你的路径不对,要么是你的版本不对,请检查。

 

3)

            Traceback (most recent call last): 
              File "C:/Python24/lib/threading.py", line 442, in __bootstrap 
              self.run() 
              File "c:/libsvm/tools/gridregression.py", line 212, in run 
              self.job_queue.put((cexp,gexp,pexp)) 
              File "C:/Python24/lib/Queue.py", line 88, in put 
              self._put(item) 
              File "c:/libsvm/tools/gridregression.py", line 268, in _put 
              self.queue.insert(0,item) 
              AttributeError: 'collections.deque' object has no attribute 'insert

       [解析] 很显然,你调用的是gridregression.py,其是用来做回归用的。如果你调用easy.py也出现这种问题按照原作者的说法,这里是因为你的python调用出现错误,很可能是版本不对,如果是2.4的版本,请把easy.py中的

      self.queue.insert(0,item)
改成
      if sys.hexversion >= 0x020400A1:
              self.queue.appendleft(item)
       else
              self.queue.insert(0,item)

这篇关于LibSVM学习(六)——easy.py和grid.py的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148065

相关文章

Python如何使用seleniumwire接管Chrome查看控制台中参数

《Python如何使用seleniumwire接管Chrome查看控制台中参数》文章介绍了如何使用Python的seleniumwire库来接管Chrome浏览器,并通过控制台查看接口参数,本文给大家... 1、cmd打开控制台,启动谷歌并制定端口号,找不到文件的加环境变量chrome.exe --rem

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

SpringBoot如何使用TraceId日志链路追踪

《SpringBoot如何使用TraceId日志链路追踪》文章介绍了如何使用TraceId进行日志链路追踪,通过在日志中添加TraceId关键字,可以将同一次业务调用链上的日志串起来,本文通过实例代码... 目录项目场景:实现步骤1、pom.XML 依赖2、整合logback,打印日志,logback-sp

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea