推荐系统实现3:多任务精排算法

2024-02-15 22:30

本文主要是介绍推荐系统实现3:多任务精排算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 场景:精排(多任务学习)

  • 模型:ESMM、MMOE

  • 数据:Ali-CCP数据集

什么是精排?

精排的目标是粗排中输出的TopK数据,因此可以使用比粗排更多的特征,更复杂的模型和更精细的策略(用户的特征和行为在该层的大量使用和参与也是基于这个原因)。

什么是多任务学习?

多任务学习(multi-task learning),本质上是希望使用一个模型完成多个任务的建模。在推荐系统中,多任务学习一般即指多目标学习(multi-label learning),不同目标输入相同的feature进行联合训练,是迁移学习的一种。

为什么使用多任务学习精排算法?

1. 很多业界推荐的业务,天然就是一个多目标的建模场景,需要多目标共同优化。

2.工程便利,不用针对不同的任务训练不同的模型。一般推荐系统中排序模块延时需求在40ms左右,如果分别对每个任务单独训练一个模型,难以满足需求。出于控制成本的目的,需要将部分模型进行合并。合并之后,能更高效的利用训练资源和进行模型的迭代升级。

简单的多任务学习实现

一种最简单的实现多任务学习的方式是对不同任务的loss进行加权。例如谷歌的Youtube DNN论文中提到的一种加权交叉熵:

这种loss加权的方式优点如下:

  • 模型简单,仅在训练时通过梯度乘以样本权重实现对其它目标的加权
  • 模型上线简单,和base完全相同,不需要额外开销

缺点:

  • 本质上并不是多目标建模,而是将不同的目标转化为同一个目标。样本的加权权重需要根据AB测试才能确定。

shared bottom

优点:

  • 浅层参数共享,互相补充学习,任务相关性越高,模型loss优化效果越明显,也可以加速训练。

缺点:

  • 任务不相关甚至优化目标相反时(例如新闻的点击与阅读时长),可能会带来负收益,多个任务性能一起下降。

一般把Shared-Bottom的结构称作“参数硬共享”,多任务学习网络结构设计的发展方向便是如何设计更灵活的共享机制,从而实现“参数软共享”。

(类似于Finetune)

ESMM

不同的目标由于业务逻辑,有显式的依赖关系,例如曝光→点击→转化。用户必然是在商品曝光界面中,先点击了商品,才有可能购买转化。阿里提出了ESMM(Entire Space Multi-Task Model)网络,显式建模具有依赖关系的任务联合训练。该模型虽然为多任务学习模型,但本质上是以CVR为主任务,引入CTR和CTCVR作为辅助任务,解决CVR预估的挑战:1.样本选择偏差。2.稀疏数据。

三个任务之间具有如下关系:

x表示曝光,y表示点击,z表示转化。模型结构如下图:

主任务和辅助任务共享特征,不同任务输出层使用不同的网络,将cvr的预测值*ctr的预测值作为ctcvr任务的预测值,利用ctcvr和ctr的label构造损失函数:

这种模型的策略类似于特征迁移,旨在特征层面学习到足够的相关信息,同时,这种学习方式帮助了主任务在一个完整的任务空间内进行学习,不是单独的曝光到转化,而是加入了点击这一中间辅助空间。

(未完待续)

这篇关于推荐系统实现3:多任务精排算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/712720

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听