使用 Chainlit, Langchain 及 Elasticsearch 轻松实现对 PDF 文件的查询

2024-02-15 18:20

本文主要是介绍使用 Chainlit, Langchain 及 Elasticsearch 轻松实现对 PDF 文件的查询,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在我之前的文章 “Elasticsearch:与多个 PDF 聊天 | LangChain Python 应用教程(免费 LLMs 和嵌入)” 里,我详述如何使用 Streamlit,Langchain, Elasticsearch 及 OpenAI 来针对 PDF 进行聊天。在今天的文章中,我将使用 Chainlit 来展示如使用 Langchain 及 Elasticsearch 针对 PDF 文件进行查询。

为方便大家学习,我的代码在地址 GitHub - liu-xiao-guo/langchain-openai-chainlit: Chat with your documents (pdf, csv, text) using Openai model, LangChain and Chainlit 进行下载。

安装

安装 Elasticsearch 及 Kibana

如果你还没有安装好自己的 Elasticsearch 及 Kibana,那么请参考一下的文章来进行安装:

  • 如何在 Linux,MacOS 及 Windows 上进行安装 Elasticsearch

  • Kibana:如何在 Linux,MacOS 及 Windows 上安装 Elastic 栈中的 Kibana

在安装的时候,请选择 Elastic Stack 8.x 进行安装。在安装的时候,我们可以看到如下的安装信息:

 拷贝 Elasticsearch 证书

我们把 Elasticsearch 的证书拷贝到当前的目录下:

$ pwd
/Users/liuxg/python/elser
$ cp ~/elastic/elasticsearch-8.12.0/config/certs/http_ca.crt .
$ ls http_ca.crt 
http_ca.crt

安装 Python 依赖包

我们在当前的目录下打入如下的命令:

python3 -m venv .venv
source .venv/bin/activate

然后,我们再打入如下的命令:

$ pwd
/Users/liuxg/python/langchain-openai-chainlit
$ source .venv/bin/activate
(.venv) $ pip3 install -r requirements.txt

运行应用

有关 Chainlit 的更多知识请参考 Overview - Chainlit。这里就不再赘述。有关 pdf_qa.py 的代码如下:

pdf_qa.py

# Import necessary modules and define env variables# from langchain.embeddings.openai import OpenAIEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQAWithSourcesChain
from langchain_openai import ChatOpenAI
from langchain.prompts.chat import (ChatPromptTemplate,SystemMessagePromptTemplate,HumanMessagePromptTemplate,
)
import os
import io
import chainlit as cl
import PyPDF2
from io import BytesIOfrom pprint import pprint
import inspect
# from langchain.vectorstores import ElasticsearchStore
from langchain_community.vectorstores import ElasticsearchStore
from elasticsearch import Elasticsearchfrom dotenv import load_dotenv# Load environment variables from .env file
load_dotenv()OPENAI_API_KEY= os.getenv("OPENAI_API_KEY")
ES_USER = os.getenv("ES_USER")
ES_PASSWORD = os.getenv("ES_PASSWORD")
elastic_index_name='pdf_docs'# text_splitter and system templatetext_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)system_template = """Use the following pieces of context to answer the users question.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
ALWAYS return a "SOURCES" part in your answer.
The "SOURCES" part should be a reference to the source of the document from which you got your answer.Example of your response should be:```
The answer is foo
SOURCES: xyz
```Begin!
----------------
{summaries}"""messages = [SystemMessagePromptTemplate.from_template(system_template),HumanMessagePromptTemplate.from_template("{question}"),
]
prompt = ChatPromptTemplate.from_messages(messages)
chain_type_kwargs = {"prompt": prompt}@cl.on_chat_start
async def on_chat_start():# Sending an image with the local file pathelements = [cl.Image(name="image1", display="inline", path="./robot.jpeg")]await cl.Message(content="Hello there, Welcome to AskAnyQuery related to Data!", elements=elements).send()files = None# Wait for the user to upload a PDF filewhile files is None:files = await cl.AskFileMessage(content="Please upload a PDF file to begin!",accept=["application/pdf"],max_size_mb=20,timeout=180,).send()file = files[0]# print("type: ", type(file))# print("file: ", file)# pprint(vars(file))# print(file.content)msg = cl.Message(content=f"Processing `{file.name}`...")await msg.send()# Read the PDF file# pdf_stream = BytesIO(file.content)with open(file.path, 'rb') as f:pdf_content = f.read()pdf_stream = BytesIO(pdf_content)pdf = PyPDF2.PdfReader(pdf_stream)pdf_text = ""for page in pdf.pages:pdf_text += page.extract_text()# Split the text into chunkstexts = text_splitter.split_text(pdf_text)# Create metadata for each chunkmetadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]# Create a Chroma vector storeembeddings = OpenAIEmbeddings()url = f"https://{ES_USER}:{ES_PASSWORD}@localhost:9200"connection = Elasticsearch(hosts=[url], ca_certs = "./http_ca.crt", verify_certs = True)docsearch = Noneif not connection.indices.exists(index=elastic_index_name):print("The index does not exist, going to generate embeddings")   docsearch = await cl.make_async(ElasticsearchStore.from_texts)( texts,embedding = embeddings, es_url = url, es_connection = connection,index_name = elastic_index_name, es_user = ES_USER,es_password = ES_PASSWORD,metadatas=metadatas)else: print("The index already existed")docsearch = ElasticsearchStore(es_connection=connection,embedding=embeddings,es_url = url, index_name = elastic_index_name, es_user = ES_USER,es_password = ES_PASSWORD    )# Create a chain that uses the Chroma vector storechain = RetrievalQAWithSourcesChain.from_chain_type(ChatOpenAI(temperature=0),chain_type="stuff",retriever=docsearch.as_retriever(search_kwargs={"k": 4}),)# Save the metadata and texts in the user sessioncl.user_session.set("metadatas", metadatas)cl.user_session.set("texts", texts)# Let the user know that the system is readymsg.content = f"Processing `{file.name}` done. You can now ask questions!"await msg.update()cl.user_session.set("chain", chain)@cl.on_message
async def main(message:str):chain = cl.user_session.get("chain")  # type: RetrievalQAWithSourcesChainprint("chain type: ", type(chain))cb = cl.AsyncLangchainCallbackHandler(stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"])cb.answer_reached = Trueprint("message: ", message)pprint(vars(message))print(message.content)res = await chain.acall(message.content, callbacks=[cb])answer = res["answer"]sources = res["sources"].strip()source_elements = []# Get the metadata and texts from the user sessionmetadatas = cl.user_session.get("metadatas")all_sources = [m["source"] for m in metadatas]texts = cl.user_session.get("texts")print("texts: ", texts)if sources:found_sources = []# Add the sources to the messagefor source in sources.split(","):source_name = source.strip().replace(".", "")# Get the index of the sourcetry:index = all_sources.index(source_name)except ValueError:continuetext = texts[index]found_sources.append(source_name)# Create the text element referenced in the messagesource_elements.append(cl.Text(content=text, name=source_name))if found_sources:answer += f"\nSources: {', '.join(found_sources)}"else:answer += "\nNo sources found"if cb.has_streamed_final_answer:cb.final_stream.elements = source_elementsawait cb.final_stream.update()else:await cl.Message(content=answer, elements=source_elements).send()

我们可以使用如下的命令来运行:

export ES_USER="elastic"
export ES_PASSWORD="xnLj56lTrH98Lf_6n76y"
export OPENAI_API_KEY="YourOpenAiKey"chainlit run pdf_qa.py -w
(.venv) $ chainlit run pdf_qa.py -w
2024-02-14 10:58:30 - Loaded .env file
2024-02-14 10:58:33 - Your app is available at http://localhost:8000
2024-02-14 10:58:34 - Translation file for en not found. Using default translation en-US.
2024-02-14 10:58:35 - 2 changes detected

我们先选择项目自带的 pdf 文件:

Is sample PDF download critical to an organization?

Does comprehensive PDF testing have various advantages?

这篇关于使用 Chainlit, Langchain 及 Elasticsearch 轻松实现对 PDF 文件的查询的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/712167

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者