python数据分析numpy基础之where三元表达式的矢量化

2024-02-15 18:12

本文主要是介绍python数据分析numpy基础之where三元表达式的矢量化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 python数据分析numpy基础之where三元表达式的矢量化

python的numpy库的where()函数返回满足条件的索引值,或者返回满足条件和不满足条件的元素值。

用法

numpy.where(condition, [x, y], /)

描述

如果x和y没传,则返回满足条件condition的索引值组成的一维数组;

如果x和y有传,则condition为True取x,condition为False取y。

入参

condition:必选,array_like,bool

x,y:可选,array_like

condition为True,则从x取对应索引的元素,

condition为False,则从y取对应索引的元素。

出参

返回一维数组组成的元组,由满足条件的索引组成,或由x和y的元素组成。

1.1 入参condition

numpy.where()的入参condition为必选入参,表示产生索引或元素的条件。

如果condition作用于一维数组,则返回数组为一维数组的索引;

如果condition作用于二维数组,则返回2个一维数组组成的元组,第1个数组表示第1位索引,第2个数组表示第2为索引。

>>> import numpy as np
# 创建一维数组
>>> ar1=np.array([1,11,2,12,3,5,6,8,10])
>>> ar1
array([ 1, 11,  2, 12,  3,  5,  6,  8, 10])
# 只送condition
# 返回ar1中元素大于5的索引组成的一维数组组成的元组
>>> np.where(ar1>5)
(array([1, 3, 6, 7, 8], dtype=int64),)# 创建二维数组
>>> ar2=np.array([[1,12,3,13,5],[11,6,15,8,9]])
>>> ar2
array([[ 1, 12,  3, 13,  5],[11,  6, 15,  8,  9]])
# 返回ar2中大于8的元素的索引,
# 元组的第1个数组为满足条件的元素的第1位索引
# 元组的第2个数组为满足条件的元素的第2位索引
# 元组的第1个和第2个数组一一对应组成元素的第1和第2位索引
# 12的索引为ar2[0,1],存放在第1个数组的0和第2个数组的1
>>> np.where(ar2>8)
(array([0, 0, 1, 1, 1], dtype=int64), array([1, 3, 0, 2, 4], dtype=int64))

1.2 入参x,y

numpy.where()的入参x,y为可选入参,表示要获取返回值的地方,可以为标量或数组。

condition为True,则True位置的元素从x取对应索引的元素或值,

condition为False,则False位置的元素从y取对应索引的元素或值。

x和y可以都是标量,都是数组,或者标量和数组的组合。

>>> import numpy as np
# 创建二维数组
>>> con=np.array([[1,12,3,13,5],[11,6,15,8,9]])
>>> con
array([[ 1, 12,  3, 13,  5],[11,  6, 15,  8,  9]])
# con元素大于8的位置取值为'>8'
# con元素小于8的位置取值为'<=8'
# x,y为标量
>>> np.where(con>8,'>8','<=8')
array([['<=8', '>8', '<=8', '>8', '<=8'],['>8', '<=8', '>8', '<=8', '>8']], dtype='<U3')
# x,y为数组
>>> ar1=np.array([1,2,3,0,5])
>>> ar2=np.array([11,12,13,10,15])
>>> con=np.array([6,7,8,9,10])
# con>8的元素索引位置取ar1对应索引位置的元素,否则取ar2的元素
>>> np.where(con>8,ar1,ar2)
array([11, 12, 13,  0,  5])
>>> con>8
array([False, False, False,  True,  True])
# x,y为标量和数组的组合
>>> np.where(con>8,'>8',con)
array(['6', '7', '8', '>8', '>8'], dtype='<U11')

这篇关于python数据分析numpy基础之where三元表达式的矢量化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/712143

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核