辗转相除法和同余原理

2024-02-15 17:04
文章标签 原理 除法 辗转 同余

本文主要是介绍辗转相除法和同余原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

辗转相除法和同余原理

  • 辗转相除法
  • 同余原理

辗转相除法

  辗转相除法就是用来求出两个数的最大公约数的方法,那么这个方法怎么用呢?举个例子:有两个数,a=12,b=8,要求这两个数的最大公约数,首先让a%b得到4,然后让a=b,b=a%b,即现在a=8,b=4;继续用a%b得到0,然后让a=b,b=a%b,现在a=4,b=0。当b等于0的时候,a的值就是原来两个数的最大公约数
  代码如下

int gcd(int a, int b)
{return b == 0 ? a : gcd(b, a % b);
}

证明辗转相除法就是证明以下关系
g c d ( a , b ) = g c d ( b , a m o d b ) a gcd(a,b)=gcd(b,a\bmod b )a gcd(a,b)=gcd(b,amodb)a
假设 a m o d b = r a\bmod b=r amodb=r
则需要证明 g c d ( a , b ) = g c d ( b , r ) gcd(a,b)=gcd(b,r ) gcd(a,b)=gcd(b,r)
因为 a m o d b = r a\bmod b=r amodb=r成立,所以下面连等式必定成立
a = b ∗ q + r \begin{align} a=b*q+r \end{align} a=bq+r
r = a − b ∗ q \begin{align} r=a-b*q \end{align} r=abq
其中q为自然整数
假设u是a和b的公共因子,则有:
a = s ∗ u b = t ∗ u \begin{split} a=s*u\\ b=t*u \end{split} a=sub=tu
将a和b带入到式子(1)当中得到
r = s ∗ u − t ∗ u ∗ q = ( s − t ∗ q ) ∗ u \begin{split} r &= s*u-t*u*q\\ &= (s-t*q)*u \end{split} r=sutuq=(stq)u
  这说明,u如果是a和b的公因子,那么u也是r的公因子,假设v是b和r的公因子,同理可得v也是a的公因子。
  综上,a和b的每个公因子,也是b和r的公因子,反之亦然。所以a和b的全体公因子集合 = b和r的全体公因子集合
g c d ( a , b ) = g c d ( b , a m o d b ) a gcd(a,b)=gcd(b,a\bmod b )a gcd(a,b)=gcd(b,amodb)a
证毕
  在求出a和b最大公约数r之后,最小公倍数就是
a ∗ b / r a*b/r ab/r
  转换成代码就是

int lcm(int a, int b)
{return a * b / gcd(a, b);
}

  在了解到以上前置知识后,来做一道题目
在这里插入图片描述
神奇的数字
  就用示例2为例,两个数分别是2和3,要求第4个神奇的数字,其实我们可以给出一个范围,使得第4个神奇的数字是在这个范围里面的,因为是第4个神奇的数字,那么这个数字最大不会超过2*4也就是8,范围就可以确定为【0,8】,因为即使没有3,求得可以被2整除的第4个数字最大也就是8了,由于又加了一个数字,那么在范围【0,8】内神奇数字的数目肯定是变多了的,那么第4个神奇数字必定是在【0,8】之间
  在确定了范围之后,我们可以定义一个函数f(x),该函数的返回值就是从0到x包含有多少个神奇数字。还是以2和3为例
在这里插入图片描述
  可以看到,在【0,8】范围内6既是2的倍数也是3的倍数,所以不管是对于2来说还是对于3来说,6都是神奇数字,即6被算作了两次神奇数字,那么我们只要进行去重,得到的神奇数字个数就是函数f(x)的返回值
  在确定了范围还有f(x)后,我们就可以使用二分法解决这道问题
代码如下:

long long gcd(int a, int b) //求最大公约数{return b == 0 ? a : gcd(b, a % b);}long long lcm(int a, int b) //求最小公倍数{return a * b / gcd(a, b);}//检查x右边有多少个数是可以被a或者b整除long long check(long long x, int a, int b) {return x / a + x / b - x / lcm(a, b);}int nthMagicalNumber(int n, int a, int b) {long long mod = 1e9 + 7;long long l = 0;long long r = (n % mod) * min(a, b);while (l < r) {long long m = (l + r) / 2;if (check(m, a, b) >= n)r = m;elsel = m + 1;}return l % (mod);}

同余原理

加法的同余原理
( a + b ) m o d c = a m o d c + b m o d c (a+b)\bmod c=a\bmod c+b\bmod c (a+b)modc=amodc+bmodc
乘法的同余原理
( a ∗ b ) m o d c = ( a m o d c ) ∗ ( b m o d c ) (a*b)\bmod c=(a\bmod c)*(b\bmod c) (ab)modc=(amodc)(bmodc)

  以加法的同余原理为例,当题目要求结果对c进行取模运算时,但是在得到结果的时候,也就是a+b运算过程中,加出来的结果已经超出了当前类型的最大值,就发生了溢出的现象,这个时候再对溢出后的结果进行取模已经没有意义了,所以就需要在运算之前就分别对两个数进行取模防止溢出

减法的同余原理
( a − b ) m o d c = ( ( a m o d c ) − ( b m o d c ) + c ) m o d c (a-b)\bmod c=((a \bmod c)-(b \bmod c)+c) \bmod c (ab)modc=((amodc)(bmodc)+c)modc
  在减法的同余原理中需要对
( a m o d c ) − ( b m o d c ) (amodc)−(bmodc) (amodc)(bmodc)加上c是为了防止两数相减得到一个负数的情况

这篇关于辗转相除法和同余原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711974

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

hdu4407容斥原理

题意: 有一个元素为 1~n 的数列{An},有2种操作(1000次): 1、求某段区间 [a,b] 中与 p 互质的数的和。 2、将数列中某个位置元素的值改变。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.Inpu

hdu4059容斥原理

求1-n中与n互质的数的4次方之和 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWrit

寻迹模块TCRT5000的应用原理和功能实现(基于STM32)

目录 概述 1 认识TCRT5000 1.1 模块介绍 1.2 电气特性 2 系统应用 2.1 系统架构 2.2 STM32Cube创建工程 3 功能实现 3.1 代码实现 3.2 源代码文件 4 功能测试 4.1 检测黑线状态 4.2 未检测黑线状态 概述 本文主要介绍TCRT5000模块的使用原理,包括该模块的硬件实现方式,电路实现原理,还使用STM32类

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。  如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。    tomcat中有一个缓冲区  如果发送大批量数据后 又不处理  那么会堆积缓冲区 后面的请求会越来越慢。