LOJ #2731 [JOI2016春季合宿]Solitaire (DP、组合计数)

2024-02-15 15:38

本文主要是介绍LOJ #2731 [JOI2016春季合宿]Solitaire (DP、组合计数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接

https://loj.ac/problem/2731

题解

首先一个很自然的思路是,设\(dp[i][j]\)表示选了前\(i\)列,第\(2\)行第\(i\)列的格子是第\(j\)个被填上的。
还要加个第三维\(0/1\),表示第\(2\)行第\(i\)列不是/是这一列最后一个被填上的(这决定了它是被上下填上还是被左右填上)。
转移: 若第\(2\)行第\(i\)列是棋子,则所有的都转移到\(f[i][0][0]\).

(1) \(0\rightarrow 0\), 两个互不影响,可以从任意的\(j'\)\(f[i][j'][0]\)转移过来,组合数选出顺序。

(2) \(1\rightarrow 0\), \((2,i)\)要在\((2,i-1)\)之前选,可以从大于当前的\(j'\)转移过来,同样用组合数选出顺序。

(3) \(0\rightarrow 1\), \((2,i)\)要在\((2,i-1)\)之后选。但是这里要求\((2,i)\)早于\((1,i)\)\((3,i)\)中的至少一个,因此需要分类讨论。我的代码里第一个转移是\((2,i)\)比上下两个(如果存在)都晚,第二个转移是\((2,i)\)早于上下两个中的一个。

代码

#include<bits/stdc++.h>
#define llong long long
#define mkpr make_pair
using namespace std;const int N = 2000;
const int P = 1e9+7;
char a[3][N+3];
llong dp[N+3][N*3+3][2];
llong fact[N*3+3],finv[N*3+3];
int n;llong quickpow(llong x,llong y)
{llong cur = x,ret = 1ll;for(int i=0; y; i++){if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}cur = cur*cur%P;}return ret;
}void updsum(llong &x,llong y) {x = (x+y)%P;}int main()
{fact[0] = 1ll; for(int i=1; i<=N*3; i++) fact[i] = fact[i-1]*i%P;finv[N*3] = quickpow(fact[N*3],P-2); for(int i=N*3-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;scanf("%d",&n);for(int i=0; i<=2; i++) scanf("%s",a[i]+1);if(a[0][1]=='x'||a[0][n]=='x'||a[2][1]=='x'||a[2][n]=='x') {puts("0"); return 0;}for(int i=2; i<=n; i++) {if((a[0][i]=='x'&&a[0][i-1]=='x')||(a[2][i]=='x'&&a[2][i-1]=='x')) {puts("0"); return 0;}}int sum = a[1][1]=='x'?1:0;dp[1][sum][0] = 1ll;for(int i=2; i<=n; i++){for(int j=1; j<=sum; j++) {updsum(dp[i-1][j][0],dp[i-1][j-1][0]),updsum(dp[i-1][j][1],dp[i-1][j-1][1]);}int now = (a[0][i]=='x')+(a[2][i]=='x'); sum += now+(a[1][i]=='x');if(a[1][i]=='o'){dp[i][0][0] = (dp[i-1][sum-now][0]+dp[i-1][sum-now][1])*fact[sum]%P*finv[sum-now]%P;continue;}for(int j=1; j<=sum; j++){if(j-now-1>=0){updsum(dp[i][j][0],(dp[i-1][sum-now-1][1]-dp[i-1][j-now-1][1]+dp[i-1][sum-now-1][0]+P)*fact[j-1]%P*finv[j-now-1]%P);}if(now>=1){updsum(dp[i][j][1],dp[i-1][min(j-1,sum-now-1)][0]*fact[sum-j]%P*finv[sum-j-now]);if(now==2&&j>=2) {updsum(dp[i][j][1],dp[i-1][j-2][0]*(sum-j)%P*(j-1)*2ll%P);}}
//          printf("dp[%d][%d]=(%lld,%lld)\n",i,j,dp[i][j][0],dp[i][j][1]);}}llong ans = 0ll;for(int i=0; i<=sum; i++) ans = (ans+dp[n][i][0])%P;printf("%lld\n",ans);return 0;
}

这篇关于LOJ #2731 [JOI2016春季合宿]Solitaire (DP、组合计数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711804

相关文章

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

uva 10154 DP 叠乌龟

题意: 给你几只乌龟,每只乌龟有自身的重量和力量。 每只乌龟的力量可以承受自身体重和在其上的几只乌龟的体重和内。 问最多能叠放几只乌龟。 解析: 先将乌龟按力量从小到大排列。 然后dp的时候从前往后叠,状态转移方程: dp[i][j] = dp[i - 1][j];if (dp[i - 1][j - 1] != inf && dp[i - 1][j - 1] <= t[i]

uva 10118 dP

题意: 给4列篮子,每次从某一列开始无放回拿蜡烛放入篮子里,并且篮子最多只能放5支蜡烛,数字代表蜡烛的颜色。 当拿出当前颜色的蜡烛在篮子里存在时,猪脚可以把蜡烛带回家。 问最多拿多少只蜡烛。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cs

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

uva 10029 HASH + DP

题意: 给一个字典,里面有好多单词。单词可以由增加、删除、变换,变成另一个单词,问能变换的最长单词长度。 解析: HASH+dp 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1233 n个硬币连续m个正面个数(dp)

题面: Coins Problem Description: Duoxida buys a bottle of MaiDong from a vending machine and the machine give her n coins back. She places them in a line randomly showing head face or tail face o