AtCoder AGC029F Construction of a Tree (二分图匹配)

2024-02-15 15:32

本文主要是介绍AtCoder AGC029F Construction of a Tree (二分图匹配),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接

https://atcoder.jp/contests/agc029/tasks/agc029_f

题解

考虑如何才能构成一棵树:显然有一个必要条件是对于每个点\(u\)来说,整张图所有的边与除去\(u\)之外所有的点存在完美匹配(即考虑一张二分图左边是除了\(u\)之外点的集合右边是\(E_i\), \(u\)\(E_i\)连边当且仅当\(u\in E_i\),该图存在完美匹配)。用Hall定理来表达就是,设\(S\)\(\{ E_1,E_2,..,E_n\}\)的任意一个子集,\(N(S)\)表示这些\(E_i\)对应的点集的并集,则\(|N(S)|\ge |S|+1\).
实际上这个条件也是充分条件。我们用一个构造算法来证明。直接从\(1\)号点开始BFS或者DFS,每次\(u\)选择一条出边到右边的一个点\(v\),然后跳到右边的点的匹配点\(u'\). 若这两个点都没被访问过,则添加一条树边\((u,u')\). 上面的命题等价于这样搜索能够遍历所有的点。因为如果某一个时刻不能走到未走过的点,那么走过的左边点个数比右边点个数多\(1\),左边点总个数比右边点总个数多\(1\),故现在未遍历的右边的点的集合\(T\)满足\(N(T)\le T\),这与上面的命题矛盾。而如果上面的命题不成立,显然无法搜出合法的方案。而这样搜索能遍历所有的点等价于原问题有解,故原命题等价于原问题有解。
时间复杂度\(O(\sum |E_i|\sqrt n)\).

注: 在这里由于时间复杂度的限制,我们只能用二分图匹配检验\(1\)号点是否满足去掉后有完美匹配,但是这并不代表所有点都有。我们证明了有解的充要条件是每个点去掉后都有完美匹配,也是\(1\)号点去掉后有完美匹配且BFS/DFS不会在遍历完所有点前终止,我们的算法是正确的。但是似乎数据里并没有这种\(1\)号点去掉后有完美匹配但实际上无解的情况,把下面BFS的代码中标注comment_1的那一行return 0;前面加一个assert(0);依然可以AC. 但实际上这种情况完全可能出现,Hack数据如下:

4
4 1 2 3 4
2 3 4
2 3 4

代码

BFS

#include<bits/stdc++.h>
#define llong long long
#define mkpr make_pair
#define riterator reverse_iterator
#define pii pair<int,int>
using namespace std;inline int read()
{int x = 0,f = 1; char ch = getchar();for(;!isdigit(ch);ch=getchar()) {if(ch=='-') f = -1;}for(; isdigit(ch);ch=getchar()) {x = x*10+ch-48;}return x*f;
}const int INF = 1e7;namespace NetFlow
{const int N = 2e5+2;const int M = 4e5;struct Edge{int v,w,nxt,rev;} e[(M<<1)+3];int fe[N+3];int te[N+3];int dep[N+3];int que[N+3];int n,en,s,t;void addedge(int u,int v,int w){en++; e[en].v = v; e[en].w = w;e[en].nxt = fe[u]; fe[u] = en; e[en].rev = en+1;en++; e[en].v = u; e[en].w = 0;e[en].nxt = fe[v]; fe[v] = en; e[en].rev = en-1;}bool bfs(){for(int i=1; i<=n; i++) dep[i] = 0;int head = 1,tail = 1; que[1] = s; dep[s] = 1;while(head<=tail){int u = que[head]; head++;for(int i=fe[u]; i; i=e[i].nxt){int v = e[i].v;if(e[i].w>0 && dep[v]==0){dep[v] = dep[u]+1;if(v==t) return true;tail++; que[tail] = v;}}}return false;}int dfs(int u,int cur){if(u==t||cur==0) {return cur;}int rst = cur;for(int &i=te[u]; i; i=e[i].nxt){int v = e[i].v;if(e[i].w>0 && rst>0 && dep[v]==dep[u]+1){int flow = dfs(v,min(rst,e[i].w));if(flow>0){e[i].w -= flow; rst -= flow;e[e[i].rev].w += flow;if(rst==0) {return cur;}}}}if(rst==cur) {dep[u] = -2;}return cur-rst;}int dinic(int _n,int _s,int _t){n = _n,s = _s,t = _t;int ret = 0;while(bfs()){for(int i=1; i<=n; i++) te[i] = fe[i];memcpy(te,fe,sizeof(int)*(n+1));ret += dfs(s,INF);}return ret;}
}
using NetFlow::addedge;
using NetFlow::dinic;const int N = 1e5;
vector<int> adj[(N<<1)+3];
vector<pair<int,pii> > ans;
int mch[(N<<1)+3];
bool vis[(N<<1)+3];
int que[N+3];
int n;bool bfs()
{int hd = 1,tl = 1; que[1] = 1; vis[1] = true;while(hd<=tl){int u = que[hd]; hd++;for(int o=0; o<adj[u].size(); o++){int v = adj[u][o]; if(vis[v]) continue;if(vis[mch[v]]) continue;que[++tl] = mch[v]; vis[v] = vis[mch[v]] = true;ans.push_back(mkpr(v,mkpr(u,mch[v])));}}if(tl<n) {return false;}return true;
}int main()
{scanf("%d",&n);for(int i=1; i<=n; i++) addedge(1,i+2,1);for(int i=n+1; i<n+n; i++) addedge(i+2,2,1);for(int i=1; i<n; i++){int sz; scanf("%d",&sz);while(sz--){int x; scanf("%d",&x); adj[i+n].push_back(x); adj[x].push_back(i+n);if(x!=1) {addedge(x+2,i+n+2,1);}}}if(dinic(n+n+1,1,2)<n-1) {puts("-1"); return 0;}for(int u=3; u<=n+2; u++){for(int i=NetFlow::fe[u]; i; i=NetFlow::e[i].nxt){int v = NetFlow::e[i].v; if(v<=n+2) continue;if(NetFlow::e[i].w==0){mch[u-2] = v-2,mch[v-2] = u-2;break;}}}
//  printf("match: "); for(int i=1; i<=n+n-1; i++) printf("%d ",mch[i]); puts("");if(!bfs()) {puts("-1"); return 0;} //comment_1sort(ans.begin(),ans.end());for(int i=0; i<ans.size(); i++) printf("%d %d\n",ans[i].second.first,ans[i].second.second);return 0;
}

DFS

#include<bits/stdc++.h>
#define llong long long
#define mkpr make_pair
#define riterator reverse_iterator
#define pii pair<int,int>
using namespace std;inline int read()
{int x = 0,f = 1; char ch = getchar();for(;!isdigit(ch);ch=getchar()) {if(ch=='-') f = -1;}for(; isdigit(ch);ch=getchar()) {x = x*10+ch-48;}return x*f;
}const int INF = 1e7;namespace NetFlow
{const int N = 2e5+2;const int M = 4e5;struct Edge{int v,w,nxt,rev;} e[(M<<1)+3];int fe[N+3];int te[N+3];int dep[N+3];int que[N+3];int n,en,s,t;void addedge(int u,int v,int w){en++; e[en].v = v; e[en].w = w;e[en].nxt = fe[u]; fe[u] = en; e[en].rev = en+1;en++; e[en].v = u; e[en].w = 0;e[en].nxt = fe[v]; fe[v] = en; e[en].rev = en-1;}bool bfs(){for(int i=1; i<=n; i++) dep[i] = 0;int head = 1,tail = 1; que[1] = s; dep[s] = 1;while(head<=tail){int u = que[head]; head++;for(int i=fe[u]; i; i=e[i].nxt){int v = e[i].v;if(e[i].w>0 && dep[v]==0){dep[v] = dep[u]+1;if(v==t) return true;tail++; que[tail] = v;}}}return false;}int dfs(int u,int cur){if(u==t||cur==0) {return cur;}int rst = cur;for(int &i=te[u]; i; i=e[i].nxt){int v = e[i].v;if(e[i].w>0 && rst>0 && dep[v]==dep[u]+1){int flow = dfs(v,min(rst,e[i].w));if(flow>0){e[i].w -= flow; rst -= flow;e[e[i].rev].w += flow;if(rst==0) {return cur;}}}}if(rst==cur) {dep[u] = -2;}return cur-rst;}int dinic(int _n,int _s,int _t){n = _n,s = _s,t = _t;int ret = 0;while(bfs()){for(int i=1; i<=n; i++) te[i] = fe[i];memcpy(te,fe,sizeof(int)*(n+1));ret += dfs(s,INF);}return ret;}
}
using NetFlow::addedge;
using NetFlow::dinic;const int N = 1e5;
vector<int> adj[(N<<1)+3];
vector<pair<int,pii> > ans;
int mch[(N<<1)+3];
bool vis[(N<<1)+3];
int n;void dfs(int u)
{for(int o=0; o<adj[u].size(); o++){int v = adj[u][o]; if(vis[v]) continue;if(vis[mch[v]]) continue;vis[v] = vis[mch[v]] = true; ans.push_back(mkpr(v,mkpr(u,mch[v])));dfs(mch[v]);}
}int main()
{scanf("%d",&n);for(int i=1; i<=n; i++) addedge(1,i+2,1);for(int i=n+1; i<n+n; i++) addedge(i+2,2,1);for(int i=1; i<n; i++){int sz; scanf("%d",&sz);while(sz--){int x; scanf("%d",&x); adj[i+n].push_back(x); adj[x].push_back(i+n);if(x!=1) {addedge(x+2,i+n+2,1);}}}if(dinic(n+n+1,1,2)<n-1) {puts("-1"); return 0;}for(int u=3; u<=n+2; u++){for(int i=NetFlow::fe[u]; i; i=NetFlow::e[i].nxt){int v = NetFlow::e[i].v; if(v<=n+2) continue;if(NetFlow::e[i].w==0){mch[u-2] = v-2,mch[v-2] = u-2;break;}}}
//  printf("match: "); for(int i=1; i<=n+n-1; i++) printf("%d ",mch[i]); puts("");vis[1] = true; dfs(1);if(ans.size()<n-1) {puts("-1"); return 0;}sort(ans.begin(),ans.end());for(int i=0; i<ans.size(); i++) printf("%d %d\n",ans[i].second.first,ans[i].second.second);return 0;
}

这篇关于AtCoder AGC029F Construction of a Tree (二分图匹配)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711787

相关文章

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

poj 3104 二分答案

题意: n件湿度为num的衣服,每秒钟自己可以蒸发掉1个湿度。 然而如果使用了暖炉,每秒可以烧掉k个湿度,但不计算蒸发了。 现在问这么多的衣服,怎么烧事件最短。 解析: 二分答案咯。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <c

poj 3258 二分最小值最大

题意: 有一些石头排成一条线,第一个和最后一个不能去掉。 其余的共可以去掉m块,要使去掉后石头间距的最小值最大。 解析: 二分石头,最小值最大。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <c

poj 2594 二分图最大独立集

题意: 求一张图的最大独立集,这题不同的地方在于,间接相邻的点也可以有一条边,所以用floyd来把间接相邻的边也连起来。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <sta

poj 3692 二分图最大独立集

题意: 幼儿园里,有G个女生和B个男生。 他们中间有女生和女生认识,男生男生认识,也有男生和女生认识的。 现在要选出一些人,使得这里面的人都认识,问最多能选多少人。 解析: 反过来建边,将不认识的男生和女生相连,然后求一个二分图的最大独立集就行了。 下图很直观: 点击打开链接 原图: 现图: 、 代码: #pragma comment(

poj 2112 网络流+二分

题意: k台挤奶机,c头牛,每台挤奶机可以挤m头牛。 现在给出每只牛到挤奶机的距离矩阵,求最小化牛的最大路程。 解析: 最大值最小化,最小值最大化,用二分来做。 先求出两点之间的最短距离。 然后二分匹配牛到挤奶机的最大路程,匹配中的判断是在这个最大路程下,是否牛的数量达到c只。 如何求牛的数量呢,用网络流来做。 从源点到牛引一条容量为1的边,然后挤奶机到汇点引一条容量为m的边

hdu 3065 AC自动机 匹配串编号以及出现次数

题意: 仍旧是天朝语题。 Input 第一行,一个整数N(1<=N<=1000),表示病毒特征码的个数。 接下来N行,每行表示一个病毒特征码,特征码字符串长度在1—50之间,并且只包含“英文大写字符”。任意两个病毒特征码,不会完全相同。 在这之后一行,表示“万恶之源”网站源码,源码字符串长度在2000000之内。字符串中字符都是ASCII码可见字符(不包括回车)。