AtCoder AGC035F Two Histograms (组合计数、容斥原理)

2024-02-15 15:32

本文主要是介绍AtCoder AGC035F Two Histograms (组合计数、容斥原理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接

https://atcoder.jp/contests/agc035/tasks/agc035_f

题解

B题难度的F题……然而我还是不会
假设第\(i\)行染的长度是\(a_i\), 第\(j\)列是\(b_j\)
考虑什么情况下两种方案会重复: 若存在\(i,j\)使得\(a_i+1=j\)\(b_j=i\), 那么令\(a'_i=j-1,b'_j=i+1\)可以得到一样的结果。
那么我们也就是要计算不存在\(a_i+1=j\)\(b_j=i\)的序列\(a,b\)个数。
充分性证明: 设存在两个不同的方案\(a,b\)\(a',b'\)满足上面的条件且产生了同样的结果。设\(j\)为最小的满足\(b_j\ne b'_j\)的位置。若\(j=1\)则结论显然成立,若\(j>1\)则有\(a_{b'_j}\ge j\)\(a'_{b'_j}\le j-1\), 又因为\(a'_{b'_j}\ne j-1\)\(a'_{b'_j}\le j-2\). 因此\(a'_{b'_j}\lt j-1\lt a_{b'_j}\). 又因为\(b_{j-1}=b'_{j-1}\),两矩阵第\(b'_j\)行第\((j-1)\)列不可能相等,矛盾。
然后容斥一下就好: \(\sum^\min(n,m)_{k=0}(-1)^k{m\choose k}{n\choose k}k!(m+1)^{n-k}(n+1)^{m-k}\)
时间复杂度\(O(n+m)\).

代码

#include<bits/stdc++.h>
#define llong long long
using namespace std;inline int read()
{int x = 0,f = 1; char ch = getchar();for(;!isdigit(ch);ch=getchar()) {if(ch=='-') f = -1;}for(; isdigit(ch);ch=getchar()) {x = x*10+ch-48;}return x*f;
}const int N = 5e5;
const int P = 998244353;
llong fact[N+3],finv[N+3];
int n,m;llong quickpow(llong x,llong y)
{llong cur = x,ret = 1ll;for(int i=0; y; i++){if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}cur = cur*cur%P;}return ret;
}
llong comb(llong x,llong y) {return x<0||y<0||x<y?0ll:fact[x]*finv[y]%P*finv[x-y]%P;}int main()
{fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1ll)%P;scanf("%d%d",&n,&m); int lim = min(n,m); llong pwn = quickpow(n+1,m-lim),pwm = quickpow(m+1,n-lim); llong ans = 0ll;for(int i=lim; i>=0; i--){llong cur = comb(m,i)*comb(n,i)%P*fact[i]%P*pwn%P*pwm%P;if(i&1) {ans = (ans-cur+P)%P;} else {ans = (ans+cur)%P;}pwn = pwn*(n+1ll)%P,pwm = pwm*(m+1ll)%P;}printf("%lld\n",ans);return 0;
}

这篇关于AtCoder AGC035F Two Histograms (组合计数、容斥原理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711783

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L

Spring Cloud Hystrix原理与注意事项小结

《SpringCloudHystrix原理与注意事项小结》本文介绍了Hystrix的基本概念、工作原理以及其在实际开发中的应用方式,通过对Hystrix的深入学习,开发者可以在分布式系统中实现精细... 目录一、Spring Cloud Hystrix概述和设计目标(一)Spring Cloud Hystr

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制